
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1972

Digital system design and simulation
Ronald William Borgstahl
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Electrical and Electronics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Borgstahl, Ronald William, "Digital system design and simulation " (1972). Retrospective Theses and Dissertations. 5886.
https://lib.dr.iastate.edu/rtd/5886

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F5886&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F5886&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F5886&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F5886&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F5886&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F5886&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F5886&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/5886?utm_source=lib.dr.iastate.edu%2Frtd%2F5886&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

INFORMATION TO USERS

This dissertation was produced from a microfilm copy of the original document.
While the most advanced technological means to photograph and reproduce this
document have been used, the quality is heavily dependent upon the quality of
the original submitted.

The following explanation of techniques is provided to help you understand
markings or patterns which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document
photographed is "Missing Page(s)". If it was possible to obtain the
missing page(s) or section, they are spliced into the film along with
adjacent pages. This may have necessitated cutting thru an image and
duplicating adjacent pages to insure you complete continuity.

2. When an image on the film is obliterated with a large round black
mark, it is an indication that the photographer suspected that the
copy may have moved during exposure and thus cause a blurred
image. You will find a good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., was part of the material being
photographed the photographer followed a definite method in
"sectioning" the materia!. It is customary to begin photoing at the
upper left hand corner of a large sheet and to continue photoing from
left to right in equal sections with a small overlap. If necessary,
sectioning is continued again - beginning below the first row and
continuing on until complete.

4. The majority of users indicate that the textual content is of greatest
value, however, a somewhat higher quality reproduction could be
made from "photographs" if essential to the understanding of the
dissertation. Silver prints of "photographs" may be ordered at
additional charge by writing the Order Department, giving the catalog
number, title, author and specific pages you wish reproduced.

University Microfilms
300 North Zeeb Road
Ann Arbor, Michigan 48106

A Xerox Education Company

www.manaraa.com

73-3859

BORGSTm, Ronald William, 1940-
DIGITAL SYSTEM DESIGN AND SIMULATION.

Iowa State University, Ph.D., 1972
Engineering, electrical

University Microfilms, A XEROX Company, Ann Arbor, Michigan

© 1972

Ronald William Borgstahl

ALL RIGHTS RESERVED

www.manaraa.com

Digital system design and simulation

A Dissertation Submitted to the

Graduate Faculty in Partial Fullfillment of

The Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major: Electrical Engineering

by

Ronald William Borgstahl

Approved:

In Charge of Major Work

For the Major Department

For the Graduate College

Iowa State University

Ames, Iowa

1972

Copyright <c)Ronaid William Borgstahl, 1972. All rights reserved.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

PLEASE NOTE:

Some pages may have

indistinct print.

Filmed as received.

University Microfilms, A Xerox Education Company

www.manaraa.com

ii

TABLE OF CONTENTS

page

INTRODUCTION 1

LITERATURE REVIEW 6

SYSTEM OVERVIEW 12

NETWORK DESCRIPTION 18

Macro Table Generator 24

Network Compiler 30

Declaration Generator 38

Cross-Reference Generator 42

SIMULATOR DEFINITION 44

Control Language Semantics and Syntax 44

Control Language Compiler 53

SIMULATION 57

CONCLUSIONS 71

BIBLIOGRAPHY 76

ACKNOWLEDGEMENTS 80

APPENDIX 1. MACSIM USER'S MANUAL 81

APPENDIX 2. JOB CONTROL CARD SPECIFICATIONS 102

APPENDIX 3. A COMPLETE SAMPLE PROGRAM 107

www.manaraa.com

1

INTRODUCTION

During the past eight to ten years, a great deal of effort has been

exerted in the general area of computer-aided design of hardware systems.

This effort has taken place both at the university level, to satisfy purely

research interests, and at the industry level, to satisfy actual manufac­

turing needs. As might be expected, this general area is a very broad one.

It can imply a circuit described at the component level in order to analyze

its transient characteristics, or it could be an entire digital computing

system described in such a manner such that the overall system's character­

istics can be analyzed.

The motivations for having these systems are well known and well pub­

lished, however, in the interest of completeness, they will be repeated

here. Some of them are: (1) reduction in over-all system development

cost, (2) increase in problem analysis capabilities, (3) increase in the

speed of design, (4) improved documentation, (5) logic and implementation

errors can be detected prior to hardware construction, and (6) allows more

flexibility to obtain more detailed information, and indeed, to obtain

information that is not obtainable under actual hardware operation due to

the lack of control over initial and external stimuli. In addition, when

used as a teaching aid in the university, they provide the student with

information that simply is not practicable when only hardware is available.

Computer-aided design can be broken down into basically three areas.

They are: (1) synthesis, (2) analysis, and (3) simulation. Typically,

once a system exists to handle any or all of these three areas, and once

www.manaraa.com

2

the user's system has been put into a form which is acceptable to a computer,

then other "by-products" are relatively easy to obtain. A few of these

might be: (1) total system documentation in a standardized format,

(2) partitioning of the system's elements, (3) assignment and placement of

elements, (4) board layout and wire routing, and (5) parts lists of re­

quired material for constructing the system.

These "by-products" are not of interest to this research project

mainly because they consist basically of book-keeping type algorithms,

and also because they require a very well-defined set of hardware elements.

Instead, the first objective of this research effort was to provide a

means by which a user can accurately and concisely model his digital system,

independent of any predefined logic families or present-day state of the

art hardware elements. Once an accurate model has been defined, then the

second objective was to provide an accurate simulation of his system. Of

almost equal importance was a secondary goal, which was to provide a

simulation system which would require minimal amounts of both computer

time and capacity.

As has been pointed out by Breuer (1) and others, there are

basically five levels at which simulation of digital systems is performed.

They are :

(1) System Level: At this level, the over-all system's properties

are studied. The primary interest here is timing analysis of

the system.

^9^ "Rp Trancfor T .OTTO !• A+* hlrîc IOTTOI f-Tno •Piir»/»-*-*? r»r» o 1 /lo e •! or» *i o

evaluated. Typically, this is done by running actual programs on

www.manaraa.com

3

the system being simulated.

(3) Logic Level: At this level, the system is described using logic

equations (i.e.,Boolean equations). The logical consistency of

the design is then verified.

(4) Gate Level: At this level, the system is described by the set of

actual hardware elements from which it is to be constructed, along

with their interconnections. Typically, the output at this level

is a state-time map of the system's logic signals,

(5) Circuit Level; At this level, the system is described at the

diode, transistor, and resistor level. This is usually used to

study the transient behavior of circuits.

The area of concern in this work is that of simulating at the gate

level. This particular area was chosen for several reasons. (1) For one

reason or another, the bulk of work already performed in the area of computer-

aided design, has been done in the other four areas. (2) Most of the

existing simulators in this area have had varying degrees of inadequacy

such as, inaccurate models, models which are not user definable, in­

efficient simulation, and in some cases, they are merely analyzers and not

simulators. (3) A simulator operating at the gate level, as stated earlier,

can be a very useful instructional aid since it simply is not possible, nor

necessarily desirable, to allow students to bread-board up even a modest

size digital system.

The first two reasons for motivation will be elaborated upon later

in the literature review.

www.manaraa.com

4

Basically, a simulator must consist of three parts: (1) a means by

which the system's building blocks can be defined, (2) a means by which

the total system model can be described based upon these building blocks,

and (3) a means of exercising the model and monitoring its responses.

This then implies the necessity of a computer language which can describe

both the structural properties (1 and 2), and the behavioral properties (3).

A new language is desirable because the existing general purpose simulators

do not have a convenient means of specifying systems at the gate level, and

secondly, as will be shown later, the language required to adequately ex­

ercise such a system can be much more simple than the general purpose

simulators, and hence, more desirable and usable from the viewpoint of a

design engineer.

Briefly, the following unique results have been obtained in this

work:

1. Any integrated circuit family can be exactly modeled. For obvious

reasons this is necessary, but it also means the simulation system

will not be obsoleted by changes in hardware technology.

2. Actual element modelling is facilitated because of the high level

primitive macro set.

3. The speed of operation of the simulator was not sacrificed by

having flexibility in the input specifications. In fact, the

initial evidence indicates it is faster than the existing soft­

ware simulators.

4. The mechanics of specifying macros, networks, and exercisers are

easy to learn since they have been tailored to meet the specific

requirements of gate level simulation.

www.manaraa.com

5

5. The system's output is in a form which can easily be interpreted

by the design engineer.

6. A relatively large amount of logic can be simulated with a reason­

able amount of IBM 360/65 space and time.

7. The entire system is built modularly to facilitate future modifica­

tion and expansion.

www.manaraa.com

6

LITERATURE REVIEW

A brief description of this simulating system will be given at this

time in order to give a better feel for its relationship with respect to

other existing systems.

First of all, the building blocks (i.e., system elements such as gates)

are defined by a series of macro definitions. These macros are defined

in terms of a set of predefined, relatively high-level set of primitive

macros, or in terms of macros defined elsewhere by the user. With the

building blocks defined, then the system network is defined based upon

these macros. This network description is input into a network compiler

which generates a PL/1 program that represents the logical characteristics

of the network. The third step is to define the simulation "ontrol program.

This description is fed into another compiler which also generates a PL/1

program. These two programs are then compiled by the PL/1 compiler and are

used to control and complete the definition of the simulator. The simulator

is of the event directed type, which will be elaborated on later.

Since this simulation system is based upon a set of defining macros,

it has been given the acronym (since all programs need acronyms) of MACSIM.

In addition, the simulation phase will be referred to as MACSIM2, and all

of the preceding steps will be referred to as MACSIMl.

Ideally, it would be desirable to have a simulation system that in­

cludes at least the first four areas of simulation previously described.

The system described in (2) at IBM is such s vstem. The fifth area, circuit

level simulation, is actually in an area of itu own and is not pertinent

when total digital systems are to be evaluated.

www.manaraa.com

7

As stated earlier, there were several reasons why such a task was not

undertaken in this research project. First, a system of this magnitude

typically involves the expenditure of several thousand man-hours to imple­

ment. Secondly, a great deal of effort has already been expended in the

first three areas that deal primarily with system synthesis.

When simulating at the system level, usually a general purpose sim­

ulator can be used. Some of the more corrimon ones are GPSS, SIMSCPvIPT,

SIMULA, and GASP. As their name implies, these simulators are not restrict­

ed to simulation of solely digital systems.

One of the most active areas of research in the field of simulation

has been at the register transfer level, to wit (3,4,5,6,7,8,9,10,11).

Not all of these can be classed as simulators, rather, they should be

called analyzers. Both analyzers and simulators however, require the

system's structure be defined in terms of registers, memories, interconnect­

ing paths, and combinational networks. Typically, the machine being modeled

is a stored program machine. Hence, a timing analysis of the design can

be made by executing sample programs on the simulation model of the pro­

posed machine. A common output from such a system, in addition to the

analysis and simulation results, is a set of boolean equations describing

the system. In a few of these systems, such as (2), a schematic is also

generated.

The second active area has been in synthesis at the logic level, to

wit (12,13,14,15,16), Quite often, the system is described by a set of

combinational logic expressions, i.e., Boolean equations. In some of these

systems, the input has leaned more towards the areas of truth tables and

www.manaraa.com

8

functional arrays. The output then is typically a description of the system

implemented in predefined NAND and/or NOR logic. Regardless of the actual

implementation however, only a limited amount of actual gate timing can be

evaluated. Some of the more recent ones do, however, perform the imple­

mentation with elements having limited fan-in and fan-out characteristics,

which was not the case in the earlier versions.

Gate level simulation has also attracted a great deal of effort

(17,18,19,20,21,22,23,24). It is the author's opinion, however, that all

of these for varying reasons and in varying degrees have not resulted in

nearer to optimum solutions. Some of the attributes that are desirable

are: (1) ease of specifying the system model and simulation controller,

(2) flexibility in specifying the system model, such as a good selection of

primitives, (3) being able to simulate and not merely analyze the model,

(4) have a simulator that executes rapidly, and (5) ease of interpreting

the results.

For the most part, all of these systems except (19 and 22) have only

combinational elements making up their set of primitives. That is, NOT, OR,

AND, NOR, and NAND. This, it would seem, would make the job of modelling

much more difficult. In (19) the primitive set also includes JK flip-flop,

AC flip-flop, and an 18-bit 4096-word memory element. In (22) the primitive

set also includes a majority gate, four-phase logic elements, and a 6-bit

8-word read only memory element. In this area, MACSIM's primitive element

set includes NOT, AND, OR, NAND, NOR, RS flip-flop, JK flip-flop, D flip-

flop, and an arbitrary m-word bv n-bit read/write memory element.

www.manaraa.com

9

An analyzer, and not a simulator, is incorporated in 0-7). The

analysis section is made up of evaluation, race resolution, and control

sections. The simulators in at least (18,19,24) are not event directed

simulators. That is, the status of each logic block is reevaluated at every

clock interval. There have been some schemes used to speed up this process,

however, it still would seem to be the slowest means of simulating. Event

directed simulation was first introduced by Ulrich (20). The premise

supporting this method is that, for a typical digital network, only about

one per cent of the system's blocks are active (i.e.,changing state) at

any given point in time. To implement this scheme, first a timing wheel

is generated which is used for scheduling and controlling all activities.

Then, after examining the inputs to a gate, if it is determined that the

output will change state, then that output, or event, is placed on the

timing wheel at some future time. This time is usually whatever the

propagation delay through the gate happens to be. The more recent simulators

are of this type. In particular, (2 2) is such a simulator. MACSIM is also

an event directed simulator. However, the actual item that is scheduled on

the timing wheel is different, and hence, the over-all action of the simula­

tor is changed considerably. In particular, Ulrich's method is to first

determine if an output node will change. If it will, then all of gates in

the fan-out list of that node are scheduled to be simulated. If, however,

the gate has already been scheduled at that time, then he has to go through

a procedure he calls indirect scheduling. In the case of MACSIM, nodes

rather than gates are scheduled and no special algorithm is required to

handle this case. Either the node's new value is the same as that already

www.manaraa.com

10

scheduled, which is no problem, or else it is the complement, which can

be flagged as a race condition.

Almost all of the simulators investigated are of the table driven

variety as contrasted to the compiled variety. MACSIÎ4 and (18) operate

using compiled code to perform the simulation, basically, the table

driven simulators store the information concerning each gate in a large

table with a series of pointers representing their fan-out list, and bit

strings representing their input and output states. One additional item

is necessary which points to a standard subroutine that represents its

logical configuration. It is this subroutine then that gets executed

during simulation. This, in effect, means the simulator is operating in

the interpretive mode rather than being able to operate on totally com­

piled code. Of course, interpretive processors in general operate con­

siderably slower, and in this case, more storage is required. For instance,

in Ulrich's case, if given a gate with four inputs and one output, then

six pointers are necessary for the nodes and macro subroutine, in addition

to the at least five bits necessary to store the actual states of the nodes.

In addition, before simulating a particular gate, the status of all four

input nodes have to be updated. In the case of compiled simulators, storage

requirements for all nodes are handled just as for any simple variable

in a program. That is, the resulting amount of storage required for any

given node is not a function of its fan-out. Also, at the time of sim­

ulating each gate, complementing a single bit is all that is required, as

opposed to going through a node's fan-out list and perfortm'no all r.f the

complementations.

www.manaraa.com

11

It should be pointed out at this point, however, that compiled

simulators are not without their faults also. As in the case of MACSIM,

"cascaded" compiling (25) is done, i.e., the network is first compiled

into a high level language (PL/1) . This in turn must ultimately be com­

piled into the object language of the host computer. This penalty would

be most severe in the case where large networks are compiled often but

simulated rarely, a case which should normally not exist. However, these

compilers are quite often constructed modularly, as is MACSIM, and hence

lend themselves to relatively easy modification and expansion.

As mentioned earlier, one last feature of desirablity is the ease

of usage. Many of the systems investigated had languages which would be

either difficult to learn and use, or else lacked flexibility. It is

felt that these shortcomings have been overcome in }IACSIM, since the

basic simulation control can be defined by the use of merely two instructions.

The total instruction set contains ten instructions, most of which were

included to facilitate input/output operations.

www.manaraa.com

12

SYSTEM OVERVIEW

An overview and brief description of the total system will be given

at this time in order to give a better understanding of the functions

performed by the component parts which are described in further detail

later.

Figure 1 contains the block diagram of MACSIMl, whose function, as

stated earlier, is to define the macros, and network and simulation control

programs. A cross-reference listing can also be generated in this phase.

The solid lines represent the normal flow of operation when all of MACSIMl

is executed. The dashed lines represent options which are available for

secondary runs.

Figure 2 contains the block diagram of MACSIM2, whose function is to

perform the actual simulation.

Figure 3 contains an abbreviated sample of the key-words required, and

the order in which they are organized for running of the MACSIMl phase.

The operation is as follows. First the input is punched on cards

according to Fig. 3. This corresponds to blocks 1,4, and 12 in Fig. 1.

The macro descriptions are then input into the macro table generator (block

2) which generates all of the tables that are required for the network com­

piler. After all of the macros have been defined, the card DMP_MAC (dump

macro tables) can be inserted which causes the macro tables to be punched

on cards. Hence, any future networks which use these macros can define

the macro tables by merely reading in these cards which is much faster than

recreating the tables from their descriptions. Also, note that the macro

tables can be generated by a combination of both a previously defined table

www.manaraa.com

(3)

œ

MACf.O
DESCRIPTION

M.
NETWORK

DESCRIPTION

COMPILER
MACRO
TABLES

(2)

<

MACRO
TABLE

GENERATOR

(5) y

NETWORK
COMPILER

•~1

(6)

NETWORK
-X PROGRAM

(7)

I

DECLARATION
GENERATOR

(8)

NETWORK
TABLES

-|

(9)

K NETWORK
DECLARES

(10)

CROSS-
REFERENCE
GENERATOR

(11)

CROSS-
REFERENCE
LISTINGL

SllL
CONTROL

INSTRUCTIONS

(13)^

CONTROL
COMPILER

(14)

CONTROL
PROGRAM

Figure 1. MACSIMl - macro, network, and control description phase.

www.manaraa.com

/OPTIONAL
NETWORK
STIMULI

(2)

NETWORK
PROGRAM

(3)

NETWORK
DECLARES

(4)

CONTROL
PROGRAM

(5)

PL/1
COMPILER

(6),

PROGRAM
LISTING

(7) (8)

SIMULATOR
SIMULATION
TRACE

Figure 2. MACSIM2 - Simulation phase.

www.manaraa.com

15

DEF_MAC ;

^macro description

END_MAC;
DEF_MAC;

^macro description

END_MAC;

I
I
I

DMP_MAC;
DEF_NET;

^ network definition

END_NET;
DMP_NET;
CRS_REF;
DEF_SIM;

^simulator control instructions

END_SIM;

Figure 3. Key-words and structure of input cards to MACSIMl phase.

and newly defined macros, i.e., the two inputs into block 2.

Once the macro tables have been generated, then the network description

(block 4) is input into the network compiler (block 5). The first output

of the compiler is a PL/1 program which contains the logical description

of the network. This is stored on temporary disk space. The second out­

put is the tables which are required to generate the PL/1 declaration

statements for the network and to generate the cross-reference listing.

Also at this point; the card DMP_NET (dump network tables) can be included

which will cause these tables to be punched on cards (block 8) for later

www.manaraa.com

16

use in generating a cross-reference listing or for defining a new simula­

tion control program.

The declaration generator (block 7) then outputs onto temporary disk

space (block 9), the required PL/1 declare statements for the network

(i.e. nodes and memory elements). Several lists are also output which are

needed later in the simulation phase.

If the card CRS_REF (cross-reference) was included, then this listing

is created and output on the line printer.

At this point, all of the required network information has been

created and only the network exerciser remains to be defined. The cards

(block 12) are then input into the simulation control language compiler

(block 13). The output of this compiler is another PL/1 program which is

also placed on temporary disk space (block 14). This completes the

generation of everything that is unique to the given network and exerciser.

Assuming no errors were encountered in the preceding steps, the

actual simulation can now be performed (Fig. 2). The first step is to

compile into a single program the three sections of PL/1 code generated

in the first phase. These are blocks 2,3, and 4, which correspond to

blocks 6,9, and 14 in Fig. 1. They are input into the standard PL/1 com­

piler as a procedure which is compiled (block 5) and the source code for

the subroutine is listed (block 6). The object code is then link edited

with the other object code subroutines to complete the definition of the

simulator (block 7).

Finally, the simulator is executed which generates a trace on the

line printer (block S), at the specified time intervals, the 0/1 bit patterns

of all the specified nodes.

www.manaraa.com

17

All of the algorithms required to perform these tasks are constructed

from a series of external subroutines written in PL/1. The routines are

stored in object code on disk. Because of the large size of MACSIMl

(approximately 240,000 bytes of object code), it has been subdivided

into nine parts and an overlaid structure is used. That is, only the

routines that are required to perform the current task are brought in from

disk and placed in main memory. Only the tables which are common to all

the routines remain resident for the duration of the job. This then allows

all of MACSIM to run in a region size of 124,000 bytes. Of course, this

required region size becomes larger as the network becomes larger.

www.manaraa.com

18

NETWORK DESCRIPTION

The first step in defining a network is to define all of the build­

ing blocks (i.e., macros) that are used in modeling the network. The

syntax for defining macros is shewn in Table 1.

The notation used here is called a modified Backus Normal form. The

symbols ::= are read as "is defined by", the symbol | is read as "or",

the brackets [] denote "zero or more occurrences of", the brackets [}

denote "one or more occurrences of", and the brackets <> are used to

enclose non-primitive terms. All other symbols and all terms typed in

upper case appear literally in the macro description text. As usual, the

term on the left-hand side of ::= is the defined item, and the term on

the right-hand side is the defining item(s).

A semantic description of the -syntax shown in Table 1 is as follows:

First of all, the extent of a macro description is defined to be any des­

cription contained within the key words DEF_MAC and END_MAC. The macro

description is in effect a word description of its output nodes, input

nodes, and its drive and load characteristics. Its general form is as

follows: (output node list) (input node list) macro name; The only re­

quirement on the names used to construct the node lists is that they be

unique for a given macro. The actual network node names are substituted

in place of these names later in the network description when the macro

is used. This is analogous to the relationship of parameters and argu­

ments in subroutine calls.

www.manaraa.com

19

Table 1. Macro definition syntax

<macro^ ::= DEF_MAC ; <macro desc> END_MAC;

<macro desc> ::= {<defined macro> | <prim macro>][<comment> j

<connnent> ::= [blank] * l.<alphameric>J

<defined macro> ::= (<list>) (<list>) <inacro name> ; <drive-load desc>

<prim macro> (<list>)(<list>) <prira macro name> ; <timing desc>

<prim macro name> ;:= $NOT|$ORi$AND1$N0r1$NAND1
$RSFF|$JKFF|$DFF|$MEM

<list> ::= <identifier> L, <identifier>]

<macro name> ::= <identifier>

<drive-load desc> ::= <drive-load key> = <integer> [, <integer>J;

<drive-load key> DRIVE]LOAD

<timing desc> ::= <timing key> = <integer>;

<timing key> :;= DEL_OJDEL_1jMIN_CLK1MIN_CLR1
MIN_SET|MIN_HLD
MIM ADR*MIN INP

CYCLE 1 ACCESS!
MIN RED 1 MIN SEL

<identifier> ::= <letter> [<alpharaeric>j

<alphameric> ::= $j #|(aj_j<letter>j<digit>

<integer> ::= <digit> [<digit>j

<letter> ; A | B | \Y\ Z

<digit> : ;= Ojli j8|9

www.manaraa.com

20

The drive characteristics of the macro are defined by the key word

DRIVE= followed by a list of integer numbers corresponding to the drive

of each output node. A similar description is used to denote the load

characteristics of each input node.

The remainder of the description conveys the logical and timing

characteristics. The logical properties are defined by referencing macros

defined elsewhere (not necessarily previously defined) or by referencing

the set of primitive macros. The schematic representations of the primi­

tives are shown in Figure 4. The first five elements are the standard

combinational logic gates. The three flip-flop primitives have the

standard truth tables. In addition, the JK and D flip-flops have direct-

clear and preset inputs. The most complex of the primitives is the

memory element, as it can be used to represent any arbitrary m-word by

n-bit read/write memory. A more detailed discussion of the rules which

must be followed to use these macros is given in the MACSIM User's Manual

(Appendix 1).

Only primitive elements can convey timing information. Note the

distinction here, the load and drive characteristics are a function of

the macro being defined, whereas the timing, i.e., the time required for

the output lines to respond to the input lines, is a function of the

primitives that make up the macro description. For all but the memory

element, the propogation delay, which is the time required for the output

to respond to a change in the input, must be specified by DEL_0 and DEL_1

(delay for the output to change to a 0 and 1, respectively). For the JK and

D flip-flops, the minimum clock (MIN_CLK) must be specified. In addition,

www.manaraa.com

21

$NOT $0R $AND $NOR

>
§NAND

SET

RESET

PRESET

Q J

CLOCK

Q K

CLEAR

$RSFF

Q

$JKFF

PRESET

DATA -

Q CLOCK

CLEAR

Q

Q

$DFF

DATA INPUT
LINES

r I
ADDRESS
LINES

READ/WRITE

SELECT

DATA OUTPUT
LINES

BUSY

$MEM

Figure 4. Schematic representation of primitive macros.

www.manaraa.com

22

for the D flip-flop, the minimum amount of time that the data input must be

stable prior to and after the leading edge of the clock pulse must be given

(MIN_SET and MIN_HLD, respectively). For the memory element, the minimum

times that the address, data input, read/write line, and select line must

be held stable is given (MIN_ADR,MIN_INP,MIN_RED,MIN_SEL, respectively).

And finally, the cycle and access times are specified. These time values

are normalized units of time and can be whatever the user chooses, so long

as their relative values are consistent throughout the design. For instance,

when using TTL integrated circuits, one unit of time might be used to rep­

resent one nanosecond.

For the most part, all names used in MACSIM can be anything that is

acceptable to the PL/1 compiler with the exception they must not exceed

16 characters. In addition. Appendix 1 contains the few reserved words

that cannot be used.

A very simple-minded example of defining a two-input exclusive - or

macro is given in Figure 5. For this example, the circuit (EXCL_OR) is

defined using two-input NAND elements (NAND2). These, in turn, are de­

fined using a primitive NAND element. It should be noted here that the

order in which the terms are shown as well as their general formats (spaces,

position on the page, etc.) is not important since MACSIM's input format

is quite flexible. Again, this is discussed further in the User's Manual.

www.manaraa.com

23

Schematic representation of EXCLOR

r

INPl ̂ I *
INP2 o » t> OUT

L _ J

Macro definition of EXCL OR

DEF_MAC;
(OUT)(INP1,INP2)EXCL_0R;

DRIVE = 10;
LOAD = 2,2;

(DUMl)(INP1,INP2)NAND2;
(DUM2)(INP1,DUM1)NAND2;
(DUM3)(INP2,DUM1)NAND2;
(OUT)(DUM2,DUM3)NAND2;

END_MAC;
DEF_MAC;

(OUTPUT)(INPUT1,INPUT2)NAND2;
DRIVE = 10;
LOAD = 1,1;

(OUTPUT)(INPUT1,INPUT2)$NAND;
DEL_0 = 8;
DEL_1 =12;

END MAC;

Figure 5. Example of a macro definition for a two-input exclusive-or
circuit.

www.manaraa.com

24

Macro Table Generator

Now that the semantics and syntax of the macro descriptions have been

given, a more detailed examination of the actual implementation of these

algorithms can be discussed.

Two of the external subroutines mentioned previously are loaded from

disk to perform the task of generating the macro tables that are used in

the network compilation phase. They are DEF_MAC and PARSE. DEF_MAC is

called whenever an input card contains '•DEF_MAC;". This in turn calls

PARSE once for each statement in the macro definition that contains an

output list, input list, and macro name.

The PARSE subroutine uses a CONÛ table to perform the parsing oper­

ation. In this scheme, the action that is taken is a function of both the

current character being examined as well as the preceding one. The CONO

table is shown in Table 2. This routine returns to DEF_MAC both a vector

containing the names of the output nodes and the input nodes, as well as

a pointer indicating either which primitive macro is being used or else

indicating that a non-primitive is being used or defined. PARSE is also

called when the network is defined, hence, this pointer indicates whether

or not the network is using a previously undefined macro.

The subsequent action taken by DEF_MAC can be best understood by

first examining the four tables that it generates which make up the macro

description tables. These are represented pictorially in Figure 6 along

with a brief description of each variable name's function.

DSTRNG and NSTRNG are vectors, but can be thought of as modified lists.

Actual list structures are not used because they require more space

www.manaraa.com

25

Table 2. CONO table for parsing macro definitions.

space 1 1 1 1 10 2

1 6 8 6 6 2

1 6 7 6 6 2

3 8 3 7 9 4

10 10 10 10 10 10

5 5 8 5 5 1

-current
character

X

!
previous
character

The actions to be performed are as follows:

1. Increment character pointer; get new card if necessary.

2. Set pointer indicating first character of name.

3. Increment the phase counter (i.e., l=output list, 2=input list,
3 = macro name).

4. Perform both actions 2 and 3.

5. Get name and place in name list; if phase is 3 then get macro
pointer.

6,7,8,9. Error conditions.

10. Finished with scan; return from PARSE.

where, X is any other character which is not specifically mentioned
elsewhere.

www.manaraa.com

26

and more time to chain through. However, the same flexibility is obtained

since no space is "wasted" depending upon whether a macro might have two

nodes or 20 nodes. After each of the list elements has been entered

consecutively, the list is terminated with either a zero or blank entry

depending upon which vector is being filled. The sizes of these tables are

set to accomodate "modest" size networks (approximately twenty "average"

sized macros), however, any of these tables will automatically be expanded

by DEF_MAC in the event insufficient space was initially allocated.

The description given in Figure 6 for MAC_NAME should be fairly self-

explanatory, however, the structure of MAC_DESC (macro description) war­

rants furture discussion. As mentioned in Figure 6, the forward pointer

(FPTR) of MAC_NAME points to the row in MAC_DESC that contains the first

description element. If this is a primitive element, then a number between

1001 and 1009 is entered in the FPTR column of MAC_DESC. If, however, the

descriptor macro is not a primitive, then FPTR is set to a value correspond­

ing to the row in MAC_NAME that contains this macro's name. If it has not

yet been defined, then the name is entered in the next available row of

MAC_NAME and FPTR of MC_DESC is set up accordingly. All subsequent des­

cription macros are similarly loaded consecutively into MAC_DESC all of

their backward pointers (BPTR) would point to the same row in MAC_NAME.

One additional function is performed in DEF_MAC. This is the genera­

tion of dummy names for all nodes that are internal to the macro. For

instance, in the example given in Figure 5, dummy names must be created

fn-r nmHes TITTMI . TI1TM9 . anrl TMTM?. FarVi int-Amal nnrip nf all thfi rnacros

must have a unique name and each time a given macro is used in the network.

www.manaraa.com

Figure 6. Macro description tables.

Definition of terms:

MAC_NAME = macro name table
NAME = name of macro
DCTR = dummy name counter
NSPTR = name string pointer, points to first name in NSTRNG
DVPTR = drive pointer., points to first drive value in DSTRNG
LDPTR = load pointer, points to first load value in DSTRNG
FPTR = forward pointer, points to first description in MAC_DESC

MAC_DESC = macro description table
FPTR = forward pointer, if primitive macro then FPTK>1000,

else points to MAC_NAME
BPTR = back pointer, points to the macro it is describing in

MAC_NAME
DSPTR = points to DSTRNG which in turn points to the macro

names in NSTRNG
DELAY = contains up to six timing entries

DSTRNG = contains either drive values, load values, or pointers to
NSTRNG, strings are terminated by a zero entry

NSTRNG = contains node names, strings are terminated by a blank
entry

www.manaraa.com

MAC NAl^ MAC_DESC

NAM DCTR NSPTR DVPTR LDPTR FPTR FPTR BPTR DSPTR DELAY(6)

DSTRNG

NSTRNG

www.manaraa.com

30

another unique name must be generated. The technique used to perform

this function is as follows. As the tables are filled, each internal node

is numbered consecutively $000, $001, etc. and the dummy name counter

(DCTR) is set to zero for each macro. Later, in the network definition,

when a given macro is used, its DCTR is incremented and concatenated

with the dummy name. That is, the first time a macro is called, the names

would be $000 $000, $001$000, etc.; the second time $000$00i, $00l$001, etc.;

and so on. This is the reason why a user cannot define node names whose

first character is a "$'', since the uniqueness of names could no longer be

assured.

Network Compiler

Once the macros have been defined, the network description can then

be input and converted to a logically equivalent PL/1 program. This task

is performed by a table driven compiler called DEF_NET. This routine

uses the same parsing routine (PARSE) that was described earlier. Hence,

the general format for defining the network is the same as that for defin­

ing the macros. That is, the network description is as follows:

DEF_NET;

(output list) (input list) macro name;
I
I

END_NET;

where, the lists are as defined earlier and the macro name is any macro

previously defined.

DEF_NET has basically two parts to it. The first is a recursive

subroutine (GEN_C0DE) which "steps" through the macro tables, and the

www.manaraa.com

31

second part is a section containing internal routines which generates the

appropriate PL/1 code for each of the primitive macros.

As mentioned, GEN_CODE is a recursive routine, which means it can

either be called from DEF_NET or it can call itself. The operation is

as follows. First a network statement is input, and then parsed to get the

two lists into a single list of node names and to determine the pointer

which corresponds to the row in MAC_NAME for the macro being used. Then

GEN_CODE is called and the appropriate descriptor macros are accessed in

MAC_DESC. For a given descriptor, if it is a primitive macro, then the

appropriate code generating routine is called and the PL/1 code describing

that gate is output. If, however, the descriptor is not a primitive,

then GEN_CODE calls itself and the process begins all over at the new row

in MAC_NAME. This process continues until the entire macro has been

described in the set of primitives and the corresponding PL/1 code gen­

erated, at which time a new network statement is input. Eventually

END_NET is encountered and control is returned back to the main routine

from DEF_NET.

There are basically five routines that generate the PL/1 code. One

routine generates the code for all five combinational primitive macros,

while the other four routines generate the code for the remaining four

primitive macros.

These are four basic parts to each section of code; (1) a label,

(2) either the logical description or else the appropriate subroutine call,

(3) a call to the event scheduler, and (4) a return to the calling routine

statement.

www.manaraa.com

32

Later on, in the actual simulation, these labels are used to determine

which section of code to execute in order to, effectively, excercise a partic­

ular gate.

For combinational primitives and RS flip-flops, logical expressions are

inserted as in-line code as opposed to a procedure call since this requires

no more memory space and will execute much faster. In-line code is also

generated for the memory primitive. In this case, more program space is

required as opposed to a procedure call, however, it would be extremely

difficult, if not impossible, for the system to have a single routine which

could handle all types of memory elements that a user might wish to define.

If such a routine could be written, it certainly would execute quite slowly.

Even the in-line, 'tailored" code that is generated is the slowest of all

the primitives. This is due primarily to the fact that, for every memory

cycle, eventually all of the inputs will need to be checked to insure they

have been stable for the appropriate amount of time.

For the JK and D flip-flops, three labels and three subroutine calls

are generated for each flip-flop. These correspond to a change in the

CLOCK input, a change in the CLEAR input, and a change in the PRESET

input. One additional label is generated for the D flip-flop. For this

one, a dummy data input node name is generated which is used for determining

whether or not the data input was stable for the specified period of time

(i.e. MIN_HLD).

The reasons for using subroutine calls in these cases were as

f 1 ̂ m / 1 \ ̂1 n T m ̂T ̂ ̂ ̂ m * • ̂̂ ̂ ̂ ̂ C m m ̂ ̂ ̂ ̂
— .A. J. »-/ I • O J- w* ̂ J k/ ̂ ̂ V. ̂

which means writing a standard set of routines is no problem, (2) a

www.manaraa.com

33

considerable amount of code is required to accurately model these flip-

flops, and (3) since a network, would typically contain many of these

flip-flops (e.g. registers), a considerable savings in over-all program

size can be realized.

The third item to be placed in the generated code is a call statement

to the event scheduler. This procedure ($CHED) has four arguments. First

is the output node name of the gate being simulated, then a bit value

representing the new output value after simulation of the gate, and

finally DEL_0 and DEL_1, one of which is chosen as the time to schedule

the output change.

The last item to output is a simple return statement which returns

control back to the event simulator routine ($IMUL8).

As mentioned earlier, the combinational gates and the RS flip-flop

each have one label(i.e., entry point) and the JK and D flip-flops each

have three and four labels, respectively. The memory element, however,

has six labels. They correspond to the actions performed at the beginning

of a memory cycle and at the end of the access time. The other four labels

are used for checking the stability of the address lines, data input lines,

read/write input, and the select line. These last four checks are includ­

ed, even though they slow up the simulation, because it is felt they are

valuable pieces of information to the user.

In addition to generating PL/1 code, the compiler must perform one

additional task. That is, the appropriate tables must be generated which

be passed on to Horlararinn and rross-rftference generators. The

four tables that are generated are shown in Figure 7.

www.manaraa.com

34

INFO USE

DPTR LPTR NAME

LINO

AMNT

BPTR

INFADR

LABELS

Definition of terms:

INFO = network information table
NAME = node name
DPTR = drive pointer, points to USE
LPTR = load pointer, points to USE

USE = node usage list table
LINO = line number in source text of usage
AMNT = amount of drive or load
BPTR = brother pointer, points to another USE element

INFADR = INFO table address, is indirect chain connecting LABELS
to INFO

LABELS = contains pointers to INFO for each input node at each label.

Figure 7. Network description tables.

www.manaraa.com

35

The node usage table (USE) is a list structured table which contains,

in effect, the fan-in/fan-out information for each node. This information

is used only by the cross-reference generator. If a node has one or more

destinations then LPTR is set to the next available element in USE. At this

point, LINO is set to value corresponding to the line number in the source

text where the node was used. Also, the amount of load is entered in AMNT.

At this time, BPTR is set to zero. If the node is used again, then BPTR

is set to the next available element in USE. The same operation takes

place when a node is defined (i.e.,DPTR is set up) or multiple-defined.

It should be noted, that only user defined network nodes have entries

in the USE table. The only function of USE is to provide a cross-reference

listing. Any nodes that are internal to macros are given dummy names by

the system and therefore will not appear in this listing. This approach

was somewhat arbitrarily taken in an effort to "clean up" the cross-

reference listing.

The node names are entered in INFO simply by serially searching

through the table to see if it has already been entered. If it has not,

then it is entered in NAME at the next available space. Admittedly, this

is a very slow technique and probably warrants changing to something else,

such as a hashing scheme. Actually, this would be quite easy to do,

since only the routine called LOOKUP would need to be changed.

In order to understand the information that is stored in LABELS, a

description of what is needed by the simulator must first be given. When

a node changes state, two separate actions must be performed. First, all

of the destination gates whose output could be affected by this change must

www.manaraa.com

36

be determined. Secondly, the appropriate inputs to these gates must be

checked to determine if they are, as of yet, still undefined. These

inputs which need checking are tabulated in Table 3. Note in particular

for the JKFF, DFF, and MEM macros, the fact that any arbitrary input node

might change, does not necessarily mean the associated gate will in fact

be simulated. For instance, the output of a JK flip-flop will not change

when either the J or K inputs change state and the clock input remains

stable, hence there is no need to simulate the flip-flop in such a case.

With these two actions defined, the contents of LABELS can now be

explained. At the time when the code for each label is being generated,

the following action is taken. First the index value for the node being

processed is obtained (this corresponds to the row subscript value in­

dicating its location in INFO). If the action to be performed on that node

is defined by both columns (a) and (b) of Table 3, then its index value

is placed in LABELS as a positive number. If, however, the action is

defined only by column (b), then its index is entered as a negative

number. After this has been performed for each of the required nodes at

the given label, then a zero is entered to indicate the end of that partic­

ular label. For instance, if the code at label L(i+2) is being generated

for a JK flip-flop, then all of the gates input node index values would

be entered as negative numbers with the exception of the clock input, which

would be positive. This seemingly obscure solution was taken in order to

contain both types of information in a single table.

If the network definition includes the use of one or more memory

macros, then one additional small table is generated which contains the

memory names and their respective sizes (i.e., the number of bits per word

www.manaraa.com

37

Table 3. Gate inputs to be checked by the simulator

macro label

(a)
inputs whose change
will effect the output

(b)
inputs that must be
defined before simulating

COMB L(i) all inputs all inputs

RSFF L(i) all inputs all inputs

JKFF
L(i)
L(i+1)
L(i+2)

clear input
preset input
clock input

clear input
preset input
all inputs

DFF

L(i)
L(i+1)
L(i+2)
L(i+3)

clear input
preset input
clock input
dummy data input

clear input
preset input
all inputs
none

MEM

L(i)
L(i+1)
L(i+2)
L(i+3)
L(i+4)
L(i+5)

select input
dummy access input
dummy address input
dummy data input
dummy read input
dummy select input

all inputs
none
none
none
none
none

where, COMB = all combinational gates
RSFF = RS flip-flop
JKFF = JK flip-flop
DFF = D flip-flop
MEM = memory element

www.manaraa.com

38

and the number of words).

It should be noted that these tables, like the macro tables, are

automatically expanded in the event insufficient space was initially

defined.

After all of the network has been defined, the INFO table is sorted

by the NAME entries and placed into alphabetical order before the

declaration and cross-reference listing generators are called. This

action obviously leaves all of the index values stored in LABELS pointing

to the wrong locations in INFO. Therefore, one addition vector (INFADR)

is defined which is the same length as INFO and contains the new loca­

tions of the node names after the sort is completed. For instance, if

node X was initially at row 3 in INFO, and after the sort was placed in

say row 15, then the third element of INFADR would contain a 15.

All of the preceding PL/1 code is written on disk in a temporary data

set whose file name is NETWORK.

Declaration Generator

The first items declared are the memory elements. For every m-word

by n-bit memory that is used in the network, a corresponding bit matrix is

declared. That is, the matrix has rows from zero to (m-1) and columns

from zero to (n-1).

Secondly, all of the network nodes are declared, including of course,

both user names and system defined dummy names. Each node is defined to

have three parts: (1) one bit which contains its current binarv value.

(2) an integer number that indicates the last time the node changed states.

www.manaraa.com

and (3) an integer number which is an index pointer. The first two items

are straightforward, however, the third requires some elaboration.

The simulator is constructed of a number of external subroutines,

one of which is a subroutine generated by the network compiler. This

compiler generates the code using the actual node names that are defined

by the user. Hence, in order to perform the simulation, the other

routines need to have access to these nodes which could be performed by

externally declaring them in each of the routines. There are facilities

in PL/1 to do this, however, it would be very time consuming since it

would necessitate recompiling all of the simulator routines for every

simulation routine.

An alternate solution of overlaid defining of the node names was

taken. A vector ($NODE) whose element structures are defined to be the

same as those of the nodes is declared in each of the routines, including

the generated network routine. Then at the time the network routine is

compiled, the node names are declared and overlay defined onto $NODE.

What all of this means is that any node can be referenced by using its

name (i.e., in the network routine) or by referencing some element of

$NODE (i.e., in any of the other routines) without any penalty of added

compile time, execution time, or program space requirement.

Therefore, a node name's index is given a value corresponding to its

location in the INFO table. For instance, if the node named ABC is the

third entry in INFO (after the sort is completed), then its index would be

set to three. Later on in the actual simulation, it can then be refer­

enced either by its name ABC, or by referencing $N0DE(3).

www.manaraa.com

40

Because of peculiarities in PL/1, the actual implementation of this

scheme required the use of based storage which requires that pointers be

defined and set up initially at execution time. Therefore, in addition

to generating the PL/1 declare statements for the nodes, the declaration

generator also outputs the necessary pointer information.

Four vectors are also generated. In effect, they are used to convey

the information contained in columns (a) and (b) in Table 3. They are

shown pictorially in Figure 8. As noted in the figure, there is one

entry in $UPTR for each node in the network. The contents of $USE are

index numbers corresponding to the labels in the network program. These

two vectors define the function given in column (a) of Table 3. The

meaning of the arrows shown in Figure 8 is a s follows: if the third

node changes states, then go to the labels indicated by the contents of

$USE(5) and $USE(6) and perform a simulation.

A similar function is performed by $IPTR and $INPUTS which define

column (b) in Table 3. The meaning of the example shown in Figure 8 is:

if simulation is to be performed at the fifth label in the network program,

then, before simulating, check the two nodes indicated by the contents of

$INPIJTS(6) and $ INPUTS (7) to see if they have been defined. Again, there

is one entry in $INPUTS for each label in the network program.

Incidentally, it is possible to have zero entries in both $UPTR and

$IPTR. For instance, all network output nodes would have zero entries

since they would have no destinations, and hence, no simulation need be

performed when they change states.

www.manaraa.com

41

$UPTR

$USE

$IPTR

$INPUTS

where, $UPTR contains pointers to $USE, there is one entry for each
node name.

$USE contains label values.

$IPTR contains pointers to $INPUTS, there is one entry for each
label.

$INPUTS contains node index values.

Figure 8. Simulation control vectors generated by the declaration
generator.

www.manaraa.com

42

All of the information needed to construct these four vectors is

derived from the previously defined tables LABELS and INFADR.

All of the preceding declaration code is placed on disk in a

temporary data set whose file name is DECLARE.

Cross-Reference Generator

The actual algorithms used to generate the cross-reference listing

is of little interest or concern to this thesis. Rather, the listing it­

self is all that will be discussed here.

It is felt that the main attribute of MACSIM's cross-reference

listing is the fact that all of the information regarding each node is

presented in a single listing. This is often not the case in other systems

of this sort.

The listing has the following form. First of all, it is divided into

three columns across the page. The left-hand column contains the node

name preceded by a line number which is its reference number within the

listing.

The center column contains all of the information concerning the

node's definition. That is, the line number back in the network source

listing on which it was defined as a gate output node, the amount of

drive specified for its gate type, the amount of remaining drive after

subtracting all of its destination loads, and finally, all of the node

names that go into the defining or generation of this node. These names

are also preceded by their respective listing index numbers. In the event

the node was multiple-defined, this same type of information is listed

www.manaraa.com

43

pertaining to the secondary definitions. Of course, if a node is used but

never defined, then only the negative amount of remaining drive is listed

which corresponds to the amount of loading of the node. This is the case

for network input nodes.

The right-hand column contains all of the usage information concem-

int the node. That is, for a given destination, the amount of load is

listed along with all of the output node names of that gate which are

generated at this point. Again, each of these names is preceded by its

listing index number. And finally, after all of the destinations have

been listed, then the total net load of the node is listed. In the event

the node is never used, such as a network output node, then the only entry

in this column is a zero value under net load.

www.manaraa.com

44

SIMULATOR DEFINITION

Once the PL/1 program has been generated which defines the network

and after the appropriate declaration statements have been generated, the

remaining task is to generate one more PL/1 program that will control the

action of the simulator. Some of these functions are to apply new stimuli

to the network input nodes, load one or more words in the memory elements,

and supply a trace of the activity of the desired nodes in the network.

Before describing the syntax of the control language and its associ­

ated compiler, a description of the control instructions, shown in Table 4,

will first be given.

Control Language Semantics and Syntax

All of the instructions in Table 4 have been shown in their complete

form. That is, all of the instructions have degenerate forms. In partic­

ular, all of the IF clauses in the first nine instructions are optional.

That is, when an instruction is written in the form shown, then the

specified action is taken only when the condition is satisfied. However,

when the IF clause is omitted, the action is unconditionally taken.

The following is a semantic description of each of these ten

instructions.

1. Define check; check all input nodes to the gate before performing

the simulation on it.

2. No define check: do not check for undefined input nodes.

3. Terminate the simulation.

www.manaraa.com

45

Table 4. List of simulation control instructions.

1. DEF_CHECK IF (condition);

2. NODEF_CHECK IF (condition);

3. STOP IF (condition);

4. GOTO (label) IF (condition);

5. COMMENT (string) IF (condition);

6. HEADING (x^, X2, —-, Xn) IF (condition);

7. TRACE (x^, X2, - *n) IF (condition);

8. READ (xi, X2, ---, V IF (condition);

9. LOAD (mem^(i), mem2(i),) IF (i < = M);

10. *1' *2' ' *n
= v^, Vg, — -, v^ (ti, tg, -

where, M = integer number
= node name
= binary value

tj^ = integer number indicating time
memj(i) = i-th word of memory memj
label = any label name
string = any string of characters

condition = any logical condition which returns a boolean
true or false value

NOTE; any of the above statements can be preceded by a label
name.

www.manaraa.com

46

4. Transfer control to the specified label within the control program.

5. Print the comment in the output trace denoted by the specified

string.

6. Print the specified node names in the heading at the top of each

page of output trace.

7. Print the binary values of the specified node names. These node

names must be contained within the list of node names specified in

the heading statement. Not all of the preceding names need be

present, however, they must be in the same order. If no node

name list is specified, then all of nodes specified in the heading

are traced.

8. Read the binary values from punched cards and assign them to the

specified nodes. All of the binary values (0 and 1) corresponding

to the execution of each read statement must be punched in

consecutive card columns beginning in the first card column.

9. Perform, in effect, the same function as READ. However, is

used to facilitate the loading of memory elements only, where

the bit strings for each word are punched on a separate card.

In the form shown, all of the first 0 through M words of mem^

would be loaded, and then similarly for any other memory elements

specified. In the case of this instruction, if no IF clause is

present, then the subscript i must be an integer number, or else

no subscript need be specified at all. In the first case, the

specified word in memory would be loaded, whereas in the second

case, the entire memory would be loaded.

www.manaraa.com

47

10. Assignment statement: the elements in the node list are assigned

the corresponding values in the value list at time t^. In the

event m < n, then the last (n-m) nodes are set to the value of

V . At time t-,, etc., the value list is complemented and the
m ^

assignments made again. Time t = 0 is assumed if no time list is

specified. A periodic signal can also be defined (i.e., a clock

signal) by specifying

- period.

An exemple is shown below. This example is not intended to be a

practical or useful one, rather it is chosen to emphasize the

power of the assignment statement.

)< period >

X J
10 15 20 25 40 45 50 55

then, X = 1(0,4,10,15,20,25,40,10);

With this general discussion completed regarding the overall character­

istics of the control language, a more formal syntax definition can be

given. This syntax definition is shown in Table 5. The same modified

Backus Normal form is used here as in the definition of the macro syntax.

It should be noted that the control program, like the rest of the

MACSIM specification, can contain comments at any point so long as the

comments first non-blank character is an asterisk (*). Actually, comments

can also be placed following the semicolon (;) since the appearance of a

semicolon, with two exceptions. fArminates the cccn (pcrcc) cf a state­

ment. The exceptions are if they are contained within a comment state­

ment or within the string specification of a COMMENT instruction.

www.manaraa.com

48-49

Table 5. Syntax definition of control language.

<control progranv> ::= DEF_SIM; i<control statement> }
[<coinment statement^] END_SIM;

<coinment statement> ::= [blank] [<string>]

<control statement> : := [<label>:] <assignment statement>;,
[<label>:3 <operation clause> [<if clause>j;

<assignment statement> ::= <node list> = <value list> [(<time list>)]

<if clause> ::= IF (<condition>)

<operation clause> ::= DEF_CHECKjNODEF_CHECKlSTOP|<go to>|
<coinment>j <heading>l <trace>| <read>j <load>

<go to> ::= GOTO (<label>)

<coinment> : := COMMENT (<string>)

<heading> ::= HEADING (<node list>)

<trace> ::= TRACE [(<node list>)]

<read> ::= READ (<node list>)

<load> ::= LOAD (<memory list>)

<node list> ::= <naine> [, <name>]

<value list> ::= <binary digit> [, <binary digit>]

<time list> ;:= <integer> [, <integer>j

<ittemory list> : <name> [(<subscript>)] [, <name> [(<subscript>)]]

<condition> ::= <string>

<label> : := <name>

<subscript> ::= <lnteger>|<name>

<name> ::= <alpha> [<alphaineric>]

<string> :;= {<alphameric>}

<integer> ::= i<digit>}

 ̂̂ 1 — T. — "S. . . _ A ! -«.

<digit> ::= o]1 — | Sj 9

<binary digit> ::= 0;i

www.manaraa.com

50

One further comment should be made regarding the syntax definition.

Note that the definition of a condition is simply that it be a string of

characters. This is the way it is handled in the control language compiler,

even though such a description does not necessarily create a valid condition­

al statement. That is, it has been left as a responsibility of the user

to supply a valid conditional statement. Such a statement is, by definition,

any clause which, upon execution, will return a Boolean true or false value.

In this case, any valid PL/1 conditional statement is legitimate, since

the string is inserted literally into the PL/1 code being generated. The

following are some examples of IF clauses,

1. IF (TIME < = 100)

2. IF (-.STABLE)

3. IF (MOD(TIME,10) = 0)

4. IF (A &B)

where, TIME = reserved word indicating current time

STABLE = reserved word indicating the entire network is presently in

a stable condition (i.e., no events are scheduled)

MOD = built-in PL/1 modulo arithmetic function

A,B = network node names

The interpretation of these examples is as follows;

1. if current time is less than or equal to 100

2. if the network is not stable

3. if current time, modulo 10,equals 0

4. if nodes A and B are both true

With the semantics and syntax defined, the overall form of a MACSIM

control program warrants discussion. The reader who is familiar with

www.manaraa.com

51

programming languages will notice that the general form of the control

language bears a strong resemblance to the forms of other languages. This,

of course, was intentional. The use of labels and go-to statements, how­

ever, implies more system action than in the conventional sense.

To understand this, a more detailed examination of the function that

needs to be performed during simulation must be given. It seems to this

author, that in order to exercise a network, the user would first like to

apply some set of stimuli, and then simulate until some predetermined

condition results. A flow-chart of this operation is shown in Figure 9.

Therefore, the total control program could be constructed from a series of

these loops. This is not unlike the DO-END and BEGIN-END blocks of other

languages. Notice, however, that the calling of the simulator and the

incrementing of time operations are not included in the syntax definition.

This was done for two reasons. First, the general form of the control pro­

gram just discussed is assumed, because it is believed to be a valid and

usable assumption. Secondly, given this form and since the user would

always want these two functions performed, then the control language

compiler can automatically insert these functions into the generated code,

thereby relieving the user of having to repeatedly specify these two

operations.

Since the reserved word TIME is automatically incremented by the

system for the user, then it follows that it must also be initialized

automatically. It was felt that TIME would be more useful to a user if

it was reinitialized each time before entering a new loop group. That is.

TIME can be thought of as a loop counter, and hence, the user need not

www.manaraa.com

52

LABEL

' IS THE
CONDITION
SATISFIED?

NO

V YES

APPLY THE
STIMULI

CALL THE
SIMULATOR

INCREMENT
TIME BY 1 UNIT

Figure 9. Action of the simulation control program.

have any knowledge of the total elapsed time for specifying an action to

occur at the time he is specifying the instructions. In other words, the

scope of the reserved word TIME and all specified actions is defined to be

local or internal to a given loop. This, of course, has a disadvantage

when the user wishes to have a particular action with a scope that is

global to the entire control program. An example of this would be if a

synchronous network is defined where it would be convenient to have a

periodic clock signal defined once for the entire program. As presently

www.manaraa.com

53

implemented however, the one assignment statement required for defining

periodic signals would have to be included within each loop. This is not

an optimum solution in this case, however, it was felt that the other

conveniences outweighed this particular disadvantage. Of course, if it were

deemed necessary, a scheme for defining the scope of actions could be

implemented, even though it is not presently felt to be necessary.

Control Language Compiler

The control language compiler, like the other routines described in

MACSIMl, is an external PL/1 subroutine. The appearance of a DEF_SIM

card in the input stream causes it to be loaded into core from disk and

executed. The appearance of END_SIM causes its termination.

The operation of the compiler (DEF_SIM) is as follows. Each time a

new instruction is read from punched cards, the routine called PARSE is

called, which is a different routine than the one discussed previously.

First it scans down the instruction and obtains the first word. If this

word is a label, then it saves it and continues the scan to the next

word. This word is used to determine the type of instruction being de­

coded. If it is a reserved word, then the appropriate number is set up

(i.e., 1 through 9). If it is not a reserved word, then the assignment

statement (10) is assumed. At this point, any of three routines are called.

One is IFCHECK, which scans the remainder of the instruction looking

for an IF clause and saving it if one is found. A second is GETLIST,

which scans the instruction and obtains the elements of either a node

list, value list, time list, or memory list. The third routine is GETSTNG,

which scans the instruction and obtains either the label of a GOTO statement

www.manaraa.com

54

or the string argument of a COMMENT statement. After any or all of these

routines have been executed, control is returned to DEF_SIM and a new

instruction is entered.

In IFCHECK, once the reserved word IF has been found, the scan con­

tinues and saves all of the input string beginning at the first left

parenthesis through its matching right parenthesis. Similarly, in GETSTNG,

the scan saves all of the input string between the matching left and right

parentheses.

The routine GETLIST, however, is considerably more complex due to the

varying types of lists it has to decode. A CONO table similar to the one

discussed previously is used to perform this task. This is shown in

Table 6. The details of this algorithm will not be explained, however,

because as can be seen in the table, there are 18 different actions that

are performed depending upon the relationship of the last and current

characters being scanned.

There are basically five different types of lists that can be parsed

by GETLIST. They are given below along with the sources of these lists.

It is assumed that X, Y, and Z are network names.

1. X, Y, Z)

node list for instructions 6, 7, 8, or 9

time list for instruction 10

2. X, Y, Z =

node list for instruction 10

3. X, Y, Z(

value list for instruction 10

www.manaraa.com

55

Table 6. CONO table for the GETLIST routine.

space

space

X

f
last

character

() X re­

1 14 10 8 6 12 2

1
ERR
1

ERR
2

ERR
1

ERR
1

ERR
1 3

15
ERR
1

ERR
2

ERR
1

ERR
2

ERR
2 15

1 16
ERR
2 8

ERR
2

ERR
2

ERR
2

ERR
2

ERR
2

ERR
2

ERR
2

ERR
2

ERR
2

ERR
2

ERR
2

ERR
2

ERR
2

ERR
2

ERR
2

ERR
2

ERR
2

4 13 9 7 5 11 1

current
character

where, ERRl and ERR2 are error conditions,1 through 16 are different
types of actions to be performed, and X is any other character
which is not specifically mentioned elsewhere.

www.manaraa.com

56

4. X, Y, Z;

value list for instruction 10

5. X(i), Y(i), Z(i))

node list for instruction 9

Basically then, the appropriate type number is first set, and then GETLIST

is called. The actions taken by the CONO table are then a function of the

type of list being decoded. Depending upon this type number, the decoded

list elements are placed into one of three vectors called NODLIST, VALLIST,

or TIMLIST.

At this point, the parsing of the instruction is complete and all of

the instruction elements have been placed in the appropriate save areas

(i.e. ALABEL, NODLIST, VALLIST, TIMLIST, and IFCLAUS). The only remaining

function to be performed is to create the PL/1 code for the instruction

being processed. This is done by calling the appropriate internal procedure.

There are nine, rather than ten, of these since the code for instructions

1 and 2 can be generated by the same routine. The actual contents of

these routines as well as the code they generate is of little interest

here, and hence will not be discussed in any further detail. However, for

the reader who is interested in the actual PL/1 code generated by both the

network and control language compilers should refer to Appendix 3 where a

MACSIN sample run is given. A listing of the subroutine containing these

two sections of code has been included.

All of the PL/1 code generated by DEF_SIM is placed on disk in a

temporary data set whose file name is CONTROL. This data set now contains

three files, i.e.,NETWORK, DECLARE, and finally CONTROL.

www.manaraa.com

57

SIMULATION

As mentioned earlier, the simulator, MACSIM2, is defined by a set of

external PL/1 subroutines. Functionally, they can be divided into three

groups. These are listed below along with their subroutine names which

will be referred to in the discussion of the simulator that follows.

1. Main driving routines:

$PROGRM - control program

$NETWRK - network program

$CHED - event scheduler

$IMUL8 - event simulator

2. Common network routines:

$CLEAR - performs the clear function for JK and D flip-flops

$PRESET - performs the preset function for JK and D flip-flops

$JKFF - performs the logical switching function for the
JK flip-flop

$DFF - performs the logical switching function for the D flip-
flop

3. Assorted output routines:

$TRACE - performs the output trace

$HEAD1 - sets up the headings to be printed

$HEAD2 - prints the headings at the top of each trace page

$COMNT - prints comments in the trace output

$ERROR - prints all of the various types of errors that might
arise during simulation.

All of these routines, except $PROGRM and $NETWRK, reside in obiect

code form on disk. Therefore, for a given simulation run, only the two

www.manaraa.com

58

routines have to be compiled and then link edited with the others.

Actually, $NETWRK is not a separate routine, but rather is an entry

point within $PROGRM. The reason for this is because they both need to

have access to the declarations which were generated earlier and it would

not make sense to have to insert them twice, which is what would be neces­

sary if separate routines existed. It is possible, however, that during

simulation, $PROGRM will need to call $NETWRK. This problem was solved

by simply defining 7oPR0GRM to be a recursive subroutine which, in this

case, means it can be reactivated even though it may currently be active.

To combine the three files which were previously generated (i.e. ,

NETWORK, DECLARE, and CONTROL) into the single routine called $PROGRM, the

PL/1 compile time facility known as preprocessing was used. This is

defined to be the process in which the PL/1 source code can be modified

prior to compilation.

The routine called $PROGRM, when its original source code is loaded

from disk into core, prior to the preprocessing stage, has the following form.

$PROGRM: procedure recursive;

external (i.e., common) declarations

7oINCLUDE SYSLIB (DECLARE) ;
%INCLUDE SYSLIB(CONTROL);

$NETWRK: entry;

^INCLUDE SYSLIB(NETWORK);

end $PROGRM;

where, SYSLIB is simply the name of the data set containing the three files

DECLARE, CONTROL, and NETWORK. The preprocessor instruction ^INCLUDE

www.manaraa.com

59

performs the function of fetching the PL/1 code from the three files and

literally inserting it in the appropriate places in the already existing

source code of $PROGRM. The combined source code is then compiled and

link edited with the object code for the remainder of MACSIM2.

The flow of control during simulation has been pictorially shown in

Figure 10. The numbers on the lines connecting the routines show the

order in which the routines are called, assuming there is currently

activity in the network. First, if new stimuli are to be applied to the

network, as indicated by the control program, then the event scheduler

($CHED) is called. After all new events have been scheduled, then the

simulation routine ($IMUL8) is called. If events are scheduled on the

clock at the current time (i.e., nodes are changing states now) then the

network routine ($NETWRK) is called. The appropriate label is branched

to and the gate is simulated. $CHED is again called which determines if

the simulation has caused the gate's output to change. If it has, then

the node is scheduled on the timing clock at the appropriate time slot

in the future. That is, at the current time plus the propogation delay

through the element. In the event the output node will not change states,

control is simply returned back via paths 6 and 7. If a JK or D flip-flop

is to be simulated, then the paths marked 5.1, 5.2, 6.1, and 6.2 would

be followed, rather than paths 5 and 6.

If more events are scheduled to take place at the current time, then

steps 4 through 7 are repeated. Finally control returns back to $PROGRM.

If a trace is to be performed at this time, then $TRACE is called (paths

9 and 10). This completes the activities to be performed, therefore, time

is incremented and the process is repeated.

www.manaraa.com

60

$PROGRM

$TRACE

$CHED

$NETWRK

$SIMUL8

FLIP-FLOP
ROUTINES

Figure 10. Flow of control during simulation.

As stated earlier, however, during most of the simulating time there

is no activity in the network. This means that most of the operations are

performed by traversing paths 3 and 8, and possibly 9 and 10. That is,

typically no new events are to be scheduled in the control program, so

$IMUL8 is called. Then it is determined that no events are scheduled at

the present time, so control returns to $PROGRM and time is incremented,

and so forth.

The output routines will not be examined in detail since they are

relatively straightforward. However, the error messages that are printed

by $ERROR have been shown in Table 7 so as to give a better feel for the

www.manaraa.com

61

Table 7. List of simulation error messages.

1. NODE name IS BEING DRIVEN TO CONFLICTING STATES AT TIME = time

2. NODE name IS BEING USED BUT IS UNDEFINED, IS ASSUMED 0

3. BOTH SET AND RESET INPUTS ARE HIGH INTO RSFF name

4. CLEAR INPUT TO FLIP-FLOP name NOT STABLE LONG ENOUGH

5. PRESET INPUT TO FLIP-FLOP name NOT STABLE LONG ENOUGH

6. CLOCK INPUT TO FLIP-FLOP name NOT STABLE LONG ENOUGH

7. J INPUT TO FLIP-FLOP name NOT STABLE LONG ENOUGH

8. K INPUT TO FLIP-FLOP name NOT STABLE LONG ENOUGH

9. Q-SIDE INPUT TO FLIP-FLOP name NOT STy\BLE LONG ENOUGH

10. QBAR-SIDE INPUT TO FLIP-FLOP name NOT STABLE LONG ENOUGH

11. DATA INPUT INTO FLIP-FLOP name NOT STABLE LONG ENOUGH PRIOR TO CLOCK

12. DATA INPUT INTO FLIP-FLOP name NOT STABLE LONG ENOUGH AFTER CLOCK

13. CLOCKING OF FLIP-FLOP name ATTEMPTED DURING CLEAR OR PRESET OPERATION

14. ACCESS TO MEMORY name ATTEMPTED WHILE STILL BUSY

15. ADDRESS LINE(S) NOT STABLE ON INPUT TO MEMORY name

16. DATA-IN LINE(S) NOT STABLE ON INPUT TO MEMORY name

17. READ LINE(S) NOT STABLE ON INPUT TO MEMORY name

18. SELECT LINE(S) NOT STABLE ON INPUT TO MEMORY name

www.manaraa.com

62

types of conditions that are checked during simulation. These messages

can be thought of as warning, rather than error, messages since simulation

is never terminated by the raising of any of these conditions.

The only routines remaining to be discussed are the event scheduler

($CHED) and the simulate routine ($IMUL8). Actually, these two routines

form the nucleus of the simulator. The tables which are common to these

two routines are shown in Figure 11, along with a brief description of

each table's function. Almost all of the elements in these tables require

half-word (2 bytes) integer storage. The exceptions are ADDRS which is

a 100 position character string, and VAL in OVCLOCK and CWORK which is

one bit.

As can be seen, CLOCK is a vector containing positions 0 through 99.

This clock size was chosen as a compromise between a very large one which

would waste a considerable amount of storage, and a smaller one which would

require that a lot of the events to be scheduled would first have to be

scheduled on the overflow clock. That is, the simulation runs faster when

the clock size is larger than the largest propogation delay of any element

in the network. Of course, this can not always be achieved, particularly

when memory elements are included where the access and cycle times are

typically much greater than the gate delays. During simulation then, all

elements of CLOCK are set to zero except for the ones corresponding to

the time when an event is scheduled to occur. At these locations, a pointer

is entered which points to some position within the clock work area (CWORK).

The actual nature of ADDRS is peculiar to the fact that the imple­

mentation is in PL/1. There is a built-in function in PL/1 called INDEX

which takes the form.

www.manaraa.com

63

ADDRS

1 2 3 4 5

CLOCK

99 100

I OVCLOCK CWSTACK

TIME

NDX

VAL

NDX

VAL

BPTR

\

/x
CWORK \

where, CLOCK = event clock
ADDRS = indicates the location of where events are scheduled

on CLOCK
OVCLOCK = overflow clock
CWORK = clock working area

CWSTACK = stack containing addresses of unused areas in CWORK

Figure 11. Common tables used for scheduling and simulating events.

www.manaraa.com

64

result = INDEX(string, configuration);

where, both of its arguments can be character strings, and the result is

an integer number. When the INDEX function is executed, the specified

configuration is looked for within the string. The resultant value then

is the index number corresponding to the first occurrance of the config­

uration. If the configuration is not found, a zero value is returned.

ADDRS is then set up in the following manner. All of its positions

contain the character 0 everywhere except the positions corresponding to

the times in CLOCK where events are scheduled. These positions contain

the character 1. In addition, the variable EMPTY is set to a binary value

of 1 whenever OVCLOCK is empty. Therefore, it can be determined whether

or not the entire network is in a stable condition simply by executing one

statement. That is,

result = INDEX(ADDR,'l').

Hence, if the resultant value is zero and EMPTY is true, then the network

is stable. Naturally, this executes far faster than serially searching

the clock and overflow clock to determine if any events are scheduled.

Since it is not possible to predict beforehand what the peak network

activity is going to be, the clock work area (CWORK) is a list structure,

rather than scheduling events directly on the clock itself. The list

structure also lends itself to conveniently being able to add and delete

events. Once an element in CWORK has been simulated however, the area

needs to be released so that it can be used later. To implement this, a

push-down stack (CWSTACK) was incorporated which contains all of the avail­

able addresses (i.e., subscripts) in CWORK. That is, the top of the stack

www.manaraa.com

65

always contains the address of the next available CWORK area. Then after

an event has been simulated, the stack is effectively pushed down and the

address of the just released area is placed at the top of the stack. In

the event the level of activity becomes too high, i.e, more work areas

are needed than what were initially allocated, then CWORK and CWSTACK are

automatically increased in size.

Notice that each element of CWORK contains three items. First NDX,

which is the index value of the node that is scheduled. It will be re­

called that each node can be referenced either by its name or else by its

index value. Secondly VAL, which is one bit indicating the new value that

will be assigned to the node. Thirdly BPTR (brother pointer), which points

to another location in CWORK containing a node that is scheduled to change

at the same time. BPTR is set to zero to indicate the tail of the list.

The last table, the overflow clock (OVCLOCK), contains any events

whose delay is greater than 100. A simple serial table has been used here,

as opposed to setting up cascaded timing wheels (similar to CLOCK) which

was proposed by Ulrich (20) . The reason for this is that, typically,

there is virtually no activity in OVCLOCK and hence does not warrant the

added table and program space that would be required in the cascaded

approach. In fact, as implemented here, the storage for OVCLOCK is never

allocated unless a specific request by the scheduler is made. On the

other hand, if for some reason a large amount of activity exists in OVCLOCK,

additional storage is allocated when the original table size is exceeded.

Each element of OVCLOCK contains three elements. The first is TIME.

which indicates the time that the event is to take place, relative to CLOCK(O).

The other two, NDX and VAL, have the same meanings as those given for CWORK.

www.manaraa.com

66

The dashed line between CLOCK(O) and OVCLOCK is shown to indicate

that the status of OVCLOCK is only checked when the CLOCK passes through 0.

As mentioned earlier, if OVCLOCK is empty, then EMPTY is set to a binary 1

which means OVCLOCK does not have to be checked to determine if anything is

scheduled. If the CLOCK(O) state exists and if EMPTY is a 0, then all of

TIME entries in OVCLOCK are decremented by 100, and the ones whose times

are less than or equal to 100 are then scheduled appropriately onto CLOCK.

Whenever an element of OVCLOCK is released, then its TIME quantity is set

to -1, indicating it is free to be used again. It is also at this point

where the status of EMPTY is defined.

With the contents and actions of these tables defined, the functions

of $CHED and $IMUL8 can now be examined. The functional flow charts of

these two routines are shown in Figures 12 and 13 respectively. It is be­

lieved that these flow charts, with the aid of the preceding discussion,

should be self-explanatory and will not be discussed further.

One final item, however, does warrant discussing. This is the scheme

used for determining if a node is undefined. Or, if it is defined and is

being used, then determine if it has remained stable for the specified

amount of time. It will be recalled that each node is defined to have

three items which are:

1. VAL - bit containing the node's current value.

2. NDX - integer number indicating its index.

3. LAST - integer number indicating the last time the node changed states.

LAST is the variable that conveys these two pieces of information. That is,

when the simulator is initially loaded, all of the nodes, LAST values are

www.manaraa.com

67

$CHED

' does \
new value =
old value ,

no ves

return
is delay
>100

yes no

/ is an event \
already scheduled^ no
, at this time /

call SCHEDOV
enter event
in OVCLOCK

yes

chain to
end of current
CWORK chain

set up
ADDRS and
CLOCK return

was node
already

.scheduled

yes no

are
values
equal

call UNSTACK
enter event
in CWORK

no yes

return flag race
condition

return

return

Figure 12. Event scheduler ($CHED) flow chart.

www.manaraa.com

68

$IMUL8

IE

call < ° (
UNSCHOV

yes / is time \ no
at CLOCK(O)

EMPTY = 1
yes

yes are any
events
scheduled

no

unschedule
any of

these nodes

yes / do
< (new values =

old values

no complement
node values

using $UPTR
and $USE

get labels of
node's destinations

DEFCHK

check
undefined
inputs

i.
no simulate,
) > call $NETWRK

£
no

are all
/scheduled node's\ yes
destinations
simulated

increment
time

^ return ^

Figure 13. Simulator ($IMUL8) flow chart.

www.manaraa.com

69

set to -1. Then, after all of the destinations of a node have been sim­

ulated, its LAST value is set to the current time. Therefore, if the

gate's inputs are checked prior to simulation, any input nodes whose LAST

values are -1 are flagged as having undefined inputs. Similarly, the amount

of time that a node has been stable can also be checked simply by finding

the difference between current time and the node's LAST value. Hence tim­

ing problems associated with flip-flops and memory elements can be detected

and flagged for the user's attention.

The general philosophy adopted in MACSIM regarding the question of

what to do in the event timing problems arise is as follows. If a request

for a specific action is made, then that action is carried out to comple­

tion, independent of whether or not something might occur in the future

to alter the end result. If and when something does occur, then the

appropriate flags are raised at that time. To be more specific, take for

example the case of a memory element. Suppose the select line for the

element comes true, which initiates a memory cycle. Suppose further that

it is determined sometime later that say the address lines did not remain

stable long enough to insure a proper memory cycle. In this case, the

memory cycle would be completed as usual, however, the unstable address

lines would be detected and flagged for the user. This philosophy does

not, however, affect such timing problems as are encountered when, say

the input pulse to a gate can be masked out or suppressed at the output

due to unequal 0 and 1 propogation delays through the gate.

Tt COllld hft . nf pr»itT*QP . fhaf c

model the actual hardware situation. This approach was taken for at least

www.manaraa.com

70

two basic reasons. First, it is not likely that one general purpose

algorithm can be defined which will handle all logic families properly in

the case where timing rules are being violated. Secondly, even if such

an algorithm could be generated, it almost certainly would result in a

significantly slower simulator. This is due to the fact that once a

timing problem has been detected, then the event, which has already been

scheduled to occur, has to somehow be unscheduled. This, of course, would

more than likely be a time consuming operation, or at least require that

additional information be defined for each node, such that the time, or

times, at which it has been scheduled can be known.

www.manaraa.com

71

CONCLUSIONS

The construction of MACSIM has demonstrated, among other things, that

a gate level simulator can be developed whose input is flexible enough to

allow the use of any integrated circuit family without paying the penalty

of simulation slow down. In fact, the initial evidence indicates that

MACSIM may very well be at least an order of magnitude faster than the

present software simulators. McKay (26) defines a term called slow-down

ratio (SDR) which is the ratio of simulation time to actual device time.

In this article, he cites existing software simulators which have SDR's

in the range of 400,000:1 to 1,200,000:1. It is very difficult to compare

the SDR's of different simulators unless they are actually running the

same problem because they could vary considerably depending upon the acti­

vity level of the network being simulated. However, based upon the networks

that have been simulated with MACSIM, it appears that an SDR of no more than

100,000:1 is obtained. McKay also points out that a special purpose processor

(i.e. hardware simulator) is being constructed which is expected to have

an SDR of 400:1, which is obviously a more optimum solution, provided that

the initial hardware investment of such a processor can be justified.

In addition to a special purpose processor being faster, it can also

simulate larger networks. McKay's processor is expected to be capable of

handling networks with 36000 nodes which is about an order of magnitude

better than the software simulators. When running MACSIM on the IBM 360/65

at Iowa State University, the largest practical region size that should be

allocated is 256K, where K stands for 1024 bytes. The exact network size

that can be simulated in 256K is a function of the types of elements which

www.manaraa.com

72

make up the network, since MACSIM is a compiled code simulator. However,

any of the following estimates appear to be conservative:

1. Approximately 600 four-input NAND elements, or their equivalent.

This would correspond to about 2400 nodes and 300 packages.

2. Approximately 350 eight-input NAND elements, which corresponds to

about 2800 nodes and 350 packages.

3. Approximately 140 JK flip-flops, which corresponds to probably

70 packages.

4. More realistically, the following mix could be accomodated:

1024 bit memory, 8 eight bit registers constructed from JK flip-

flops, and 150 four-input NAND gates. This would correspond to

about 125 packages.

What all of this means is the following. Given a board size of about 12

inches by 12 inches, which is a typical size of board presently being used,

approximately 150 packages could be placed on a single board (assuming 14

pin dual-in-line packages). Hence a user could almost certainly simulate

at least one board of logic at a time, and quite possibly two boards. This,

of course, represents a significant amount of logic circuitry.

The actual computer time costs for making MACSIM runs are not cheap

if compared to the typical costs of, say, students' Fortran runs. However,

the costs can not really be compared. First, because a MACSIM program is

typically much more complex in terms of the nature of the problem being

solved. Secondly, the simulation costs must be compared to the costs of

the alternative solution. That is, the cost of bread boarding and debug­

ging the hardware. The actual cost for a typical student defined network

appears to be somewhere between $5 and $10.

www.manaraa.com

73

These costs, at least for the relatively small networks that have

been run to date, can be broken down as follows:

1. Compile the macros, network, and simulation controller into a

PL/1 subroutine - 19%.

2. Compile the above subroutine into IBM 360/65 object code - 46%.

3. Link edit the above object code with the object code of the other

simulator subroutines - 27%.

4. Actual simulation - 8%.

This cost break-down is in the proportion that one would hope it to be,

since only 27% of the total job cost is spent on compiling the network

into a computer recognizable form and simulating (parts 1 and 4). Hence,

the bulk of the cost comes from the PL/1 compiler and linkage editor.

Therefore, the cost of a MACSIM run could probably be at least cut in half

by simply changing the appropriate routines in ÎIACSIMI to output the equi­

valent assembler language code as opposed to the PL/1 code that they

presently generate. This would actually be quite an easy task since all

of MACSIM has been modularly constructed, and would in fact mean modify­

ing 14 relatively small subroutines which do nothing more than generate

the appropriate character strings. That is, all of the parsing and table

generating subroutines would not have to be modified in any way.

Not only can any integrated circuit family be modeled, but it can be

modeled quite easily for at least two reasons. First the basic primitive

macro set includes logic elements which are of a higher degree of complexity

than those found in existing gate level simulators, and are of the type

most commonly used in network design. Secondly, very complex macros can

www.manaraa.com

74

easily be defined because macros can be defined based upon other macros,

and not merely upon the primitive macro set. Hence, modelling MSI and LSI

circuits is greatly facilitated. In addition, MACSIM has been defined in

such a way as to allow, without any modifications, the usage of a data

base which would contain the set of commonly used macros in the event a

group of users would wish to construct their networks from the same types

of circuit elements. This, of course, would mean that the user would not

have to define macros at all, or at most, he would only have to define a

few extra ones to add to the data base for his particular network. Hence,

the user would only need to define his network and his network exerciser.

Because MACSIM's macro definitions are flexible, it also means it will

not become obsolete simply because some logic family might become obsolete.

It is felt that the actual mechanics of writing a MACSIM program should

be quite easy for a designer to learn because of both the nature of the

instructions and because the input specifications are virtually completely

free format. In fact, MACSIM was presented to a class containing both

electrical engineering and computer science students, none of whom had any

previous simulator experience of any kind, and many of whom had virtually

no experience in actual network design. Following approximately a two

hour discussion, these students seemed to have very' little trouble in any

of the three phases of defining macros, networks, and exercisers.

In addition, the output is in a form that is easily recognizable and

understandable to the designer. MACSIM does not, however, make any attempt

to tell the user what the "correct" answer is, nor to fix up probable design

errors. All of these judgement-type decisions are left to the user. The

www.manaraa.com

75

primary reason this is done is because no specific logic family is

assumed and hence, actual violations of a family's rules can not be de­

tected.

For reasons mentioned previously, a simulator was the goal of this

work. If however, the detection of races, hazards, and faults is desired,

then simulation is not necessarily the best solution. Harrison and Olson (27)

have an alternate solution which is faster than simulation. For certain

types of fault detection, three valued simulation may be desirable (28),

where the values are 0, 1, and undefined. In this scheme, instantaneous

switching times are not assumed as is the case with two valued simulation.

One other scheme is often used in fault detection which is called parallel

simulation. Basically, this means that each node is defined to have several

binary values, rather than just one. For instance, suppose all nodes are

defined to have eight binary values. Then, eight initial conditions of the

network could be set up, which when simulated, would result in up to eight

different solutions, all for approximately the same cost as one solution.

This has hot been extensively investigated; however, due to MACSIM's

structure, it is believed that such a scheme could quite easily be added to

MACSIM at some future time if, in fact, it were desired.

In concluding, it is believed that MACSIM contains several features

which make it both unique and preferable over the existing gate level sim­

ulators which are known to date. In addition, because of the way in which

it was constructed, it should prove to be a valuable tool and building block

for any future work in development of a more fully automated design system.

www.manaraa.com

76

BIBLIOGRAPHY

1. Breuer, M. A., "Recent Developments in the Automated Design and Analysis
of Digital Systems," Proceedings of the IEEE 60, No. 1: 12-27 (1972).

2. Rath, J. R., "Systematic Design of Automatic," AFIPS Fall Joint Computer
Conference 27, Part 1; 1093-1100 (1965).

3. Gorman, D. F. and J. P. Anderson, "A Logic Design Translator," AFIPS
Fall Joint Computer Conference Proc. 22: 251-261 (1962).

4. Schlaeppi, H. P., "A Formal Language for Describing Machine Logic,
Timing, and Sequencing (LOTIS)," IEEE Trans, on Computers EC-13,
No. 4: 439-448 (1964).

5. Procter, R. M., "A Logic Design Translator Experiment Demonstrating
Relationships of Language to Systems and Logic Design," IEEE Trans,
on Computers EC-13, No. 4: 422-430 (1964).

6. Schorn, H., "Computer-aided Design Systems and Analysis Using a
Register Transfer Language," IEEE Trans, on Computers EC-13, No. 6:
730-737 (1964).

7. Duley, J. R. and D. L. Dietmeyer, "A Digital Design Language (DDL),"
IEEE Trans, on Computers C-17, No..9: 850-861 (1968).

8. Friedman, T. D. and S. C. Yang,"Methods Used in an Automated Logic
Design Generator (ALERT)," IEEE Trans, on Computers C-18, No. 7:
593-614 (1969).

9. Potash, H., A. Tyrrill, D. Allen, A. Joseph, and G. Estrin, "DCDS
Digital Simulating System," AFIPS Fall Joint Computer Conference
35: 707-720 (1969).

10. Stabler, E. P., "System Description Languages," IEEE Trans, on
Computers C-19, No. 12: 1160-1173 (1970).

11. Pumplin, B. A., "A Programming System for the Simulation of Digital
Machines," unpublished Ph.D. thesis, Ames, Iowa, Library, Iowa State
University of Sciences and Technology (1971).

12. Ellis, D. T., "A Synthesis of Combinational Logic with NAND or NOR
Elements," IEEE Trans, on Computers EC-14, No. 5: 701-705 (1965).

13. Dietmeyer, D. L, and S. Y. H. Su, "Logic Design Automation of Fan-in
Limited NAND Networks," IEEE Trans, on Computers C-18, No. 1: 11-22
(1"69)

www.manaraa.com

77

14. Schultz, G. W,, "An Algorithm for the Synthesis of Complex Sequential
Network," Computer Design 8, No. 3: 49-55 (1969).

15. Dietmeyer, D. L., "Automated NAND Network Sythesis," Computer Design 10,
No. 3: 53-58 (1971).

16. Su, S. Y. H. and C. W, Nam, "Computer Aided Synthesis of Multiple-
output Multilevel NAND Networks with Fan-in and Fan-out Constraints,"
IEEE Trans, on Computers C-20, No. 12: 1445-1454 (1971).

17. Shalla, L., "Automatic Analysis of Electronic Digital Circuits using
List Processing," Communications of the ACM 9, No. 5: 372-380 (1966).

18. Hardie, F. H. and R. J. Suhocki, "Design and Use of Fault Simulation
for Saturn Computer Design," IEEE.Trans, on Computers EC-16, No. 4:
412-429 (1967).

19. Hays, G. G., "Computer-aided Design: Simulation of Digital Design
Logic," IEEE Trans, on Computers C-18, No. 1: 1-10 (1969).

20. Ulrich, E. G., "Exclusive Simulation of Activity in Digital Networks,"
Communications of the ACM 12, No. 2: 102-110 (1969).

21. Scheff, B. H., "A Machine Aids System for Digital Designers," Computer
Design 8, No. 10: 76-81 (1969).

22. Kofard, J. and R. Walker, "A Modular Fairchild Computer Aided Design
Program," Fairchild Semiconductor, Palo Alto, California (1969).

23. Szygenda, A., D. Rouse, and E. Thompson, "A Model and Implementation
of a Universal Delay Simulator for Large Digital Nets," AFIPS Spring
Joint Computer Conference 36: 207-215 (1970).

24. Austin, B. J., "Use of a Macro Processor in Logical Design," IEEE
Trans, on Computers C-19, No. 11: 1085-1089 (1970).

25. Glass, R. L., "An Elementary Discussion of Compiler/Interperter
Writing," Computing Surveys 1, No. 1: 55-77 (1969).

26. McKay, A. R,, "Comment on "Computer-aided Design: Simulation of Digital
Design Logic",'.' IEEE Trans, on Computers C-18, No. 9: 862 (1969).

27. Harrison, R. A. and D. J. Olson, "Race Analysis of Digital Systems
without Logic Simulation," 8th Annual Design Automation Workshop,
Atlantic City, New Jersey.(1971).

28. Breuer, M. A., "A Note on Three Valued Simulation," IEEE Trans, on
Computers C-21,No. 4: 399-402 (1972).

www.manaraa.com

78

Additional References

Beardslevj C. W., "Computer Aids for IC Design, Artwork, and Mask Generation,"
IEEE Spectrum 8, No. 9; 63-79 (1971).

Breuer, M. A., "General Survey of Design Automation of Digital Computers,"
Proceedings of the IEEE 54, No. 12: 1708-1921 (1966).

Breuer, M. A., "Functional Partitioning and Simulation of Digital
Circuits," IEEE.Trans, on Computers C-19, No. 11; 1038-1046 (1970).

Dlugatch, I,, "The Applicability of Computer-aided Design as a System
Engineering Tool," IEEE Special Issue on Computer Aided Design 55, No. 11:
1940-1945 (1967)..

Haney, F. M.,"ISDS: A Program that Designs Computer Instructions,"
AFIPS Fall Joint Computer Conference 35: 575-580 (1969).

IBM Corporation. IBM System/360 PL/1 Reference Manual. IBM Corporation,
White Plains, New York (1968).

Iverson, K. E., A Programming Language, John Wiley and Sons, Inc.,
New York (1962).

Lake, D. W., "Logic Simulation in Digital Systems," Computer Design 9,
No. 5: 77-83,(1970).

Lawson, H. W., Jr., "PL/1 List Processing," Communications of the ACM 10,
No. 6: 358-367 (1967).

Maley, G. A. and J. Earle, The Logic Design of Transistor Digital Computers,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1963).

McDougall, M. H., "Computer System Simulation: An Introduction," Computing
Surveys 2, No. 3: .191-210 (1970).

Rosen, S., Programming Systems and Languages, McGraw-Hill Book Company,
New York (1967).

Smith, W. R., "Fairchild Experimental Logic Documentation System," Fairchild
Semiconductor, Palo Alto, California (1970).

The Integrated Circuits Catalog for Design Engineers. Texas Instruments
Incorporated, Dallas, Texas (1972).

www.manaraa.com

79

Ulrich, E. G., "Time Sequenced Logical Simulation Based on Circuit Delay
and Selective Tracing of Active Network Paths," Proc. of the ACM National
Conference 20: 437-448 (1965).

Waxman, R., M. T. McMahon, B. J. Crawford, and A. B. DeAndrade, "Automated
Logic Design Techniques Applicable to Integrated Circuitry Technology,"
AFIPS Fall Joint Computer Conference 29: 247-265 (1966).

Young, S., "A Microprogram Simulator," 8th Annual Design Automation Workshop,
Atlantic City, New Jersey (1971).

www.manaraa.com

80

' ACKNOWLEDGEMENTS

The author wishes to thank both A. V. Pohm and R. J. Zingg for their

many helpful suggestions and criticisms which resulted in the inclusion of

several desirable features into this system which might have otherwise

been overlooked. The author also thanks W. B. Boast for his generous

support of computer time, and to Sheila for her typing of this manuscript.

And finally, the author thanks Carol, Leigh, and Kaye for their many years

of patience.

This work was partially supported by the Iowa State Affiliates Program

in Solid State Electronics.

www.manaraa.com

81

APPENDIX 1. MACSIM USER'S MANUAL

This document, referred to as Appendix 1, 2, and 3, is intended to be

a stand-alone document whereby the prospective MACSIM user can become

sufficiently familiar with the language structure such that he will then

be capable of modeling his network using macro definitions and ultimately

supplying the necessary instructions to fully simulate his system. There­

fore, an apology is given to the reader who has already read the thesis and

hence may find some of the following information to be redundant.

A MACSIM program must consist of basically three parts. They are:

(1) definition of the macros, (2) definition of the network that is to be

simulated, and (3) definition of the control program that will exercise

the network.

The first part, defining the macros, is the phase in which the

network building blocks are defined. A macro must consist of a list of

the input and output nodes, the drive capability of the outputs, the

loading caused by the inputs, the timing information denoting the amount

of time for the output to respond to input stimuli, and finally, the

logical switching function performed by the macro.

The timing and logical functions can be defined in two different

ways. First, by using a set of predefined primitive macros, or secondly,

by using macros which are defined elsewhere in the macro definitions. The

primitive macro names along with their required timing quantities are

shown in Table 8. The definitions of these timing quantities are also

included in Table 8. It should be noted here that a specification of

www.manaraa.com

82

Table 8. List of primitive macros and their timing specification
requirements.

primitive function primitive name timing

combinational $NOT, $0R, $AND,
$NOR, $NAND

DEL_0, DEL_1

sequential $RSFF DEL_0, DEL_1

$JKFF DEL_0, DEL_1
MIN_CLK, MIN_CLR

$DFF DEL_0, DEL_1,
MIN CLK, MIN CLR,
MIN_SET, MIN_HLD

memory $MEM CYCLE, ACCESS,
MIN_ADR, MIN_ÏNP,
MIN"RED, MIN_SEL

DEL_0, DEL_1 - amount of delay time for the output to go to a 0 and
1, respectively, after the appropriate input has been applied.

MIN_CLK - minimum amount of time that the clock input must be applied
and stable at the input to a JK or D flip-flop.

MIN_CLR - similarly for the clear and preset inputs. Note that
both inputs are assumed to have the same requirements.

MIN_SET - minimum amount of time that the data input must be set
prior to the leading edge of the clock pulse for a D flip-flop.

MIN_HLD - minimum amount of hold time that the data input must be
stable after the leading edge of the clock pulse for a D flip-
flop.

CYCLE, ACCESS - cycle and access time for a memory element.

MIN_ADR, MIN_INP, MIN_RED, MIN_SEL - minimum amounts of time that the
address, data inputs, read/write input, and select input must
remain stable, respectively, for a memory element.

www.manaraa.com

83

zero delay time is not valid. That is, all timing information must have

a value of at least one.

The schematic representations for the primitive macros are shown in

Figure 14. Notice that the JK and D flip-flops have direct set and reset

(i.e.,clear and preset) inputs. The appearance of the small circles on

these as well as the other nodes has the conventional meaning of inversion.

That is, a logical 0 at these inputs will perform the required function.

Similarly, it is the trailing edge of the clock input pulse which causes

the JK. flip-flop to change states. Also, it should be noted here that

all timing specifications are given in normalized units of time.

The format used for describing the macro nodes is as follows:

(output node list) (input node list) macro name;

where, the list elements are separated by commas. This same format is

used later in the network definition also.

In general, all of the input specifications to MACSIM are free format.

That is, items never have to appear in any specific card column, blanks

can be used freely to improve readability, and instructions can extend

beyond card boundaries for as many cards as is required to specify the

instruction. The only restriction is that only one instruction can appear

on a single card. Comments can always be inserted anywhere so long as

its first, non-blank character is an asterisk (*). (Note, a comment

cannot extend beyond a single card unless the asterisk is repeated on the

subsequent cards). Since the appearance of a semicolon (;) always term­

inates thp HppnHina nf gr. instructicT. (nct = c==nt), then. consnenLs câu

also be placed to the right of a semicolon if the user so desires. Card

columns 73 through 80 are reserved for identification numbers.

www.manaraa.com

84

$NOT $0R $AND $NOR

SET

RESET

Q

Q

PRESET

J

CLOCK

K

CLEAR

— Q

PRESET

DATA -

Q CLOCK

CLEAR•

$RSFF $JKFF $DFF

DATA INPUT
LINES

ADDRESS
LINES

READ/WRITE

SELECT

DATA OUTPUT
1 f LINES

BUSY

$MEM

Figure 14. Schematic representation of primitive macros.

www.manaraa.com

85

With these introductions given, the actual mechanics of defining a

macro can probably best be explained through the use of the example given

in Figure 15. First of all, notice all macro definitions begin with

DEF_MAC; (define macro) and end with END_MAC; (end of macro). In this

example a two input exclusive-or is defined. First, it (EXCLOR) is

defined using two input NAND gates (NAND2). The NAND2 gate is in turn

defined using the primitive macro $NAND. The actual names used in the

input and output lists are of no importance, so long as their usage remains

consistent within a macro definition. Similarly, no conflict arises in

the event different macros contain the same names. Next, in the case of

EXCL_OR, the output is defined to have a drive capability of 10 units

(normalized) and the two inputs each have a load of 2. The physical

location of these two statements within the macro is of no importance,

however, the ordering of the integer numbers must be the same as the

ordering of the nodes for which they correspond. That is, suppose INPl has

a load of 15 and INP2 has a load of 4, then the specification would be

LOAD = 15, 4;

Again, notice that only primitive macros can convey timing information.

Here, the sequence in which the timing statements are specified is not

important, however, they must follow the macro statement that they are

describing.

In general, the ordering of specific node names within input and

output lists does not matter because the user is doing the defining. How­

ever, when using primitive macros, the following ordering of the inputs is

always assumed:

www.manaraa.com

86

Schematic representation of EXCL_OR

r 1

INPl &-

INP2 Ca-
-t> OUT

L

Macro definition of EXCL OR

DEF_MAC;
(OUT)(INP1,INP2)EXCL_0R;

DRIVE = 10;
LOAD = 2,2;

(DUMl)(INP1,INP2)NAND2;
(DUM2)(INPl,DUMl)NAND2;
(DUM3)(INP2,DUM1)NAND2;
(OUT)(DUM2,DUM3)NAND2;

END_MAC;
DEF~MAC;

(OUTPUT)(INPUT1,INPUT2)NAND2;
DRIVE = 10;
LOAD = 1,1;

(OUTPUT)(INPUT1,INPUT2)$NAND;
DEL_0 = 8;
DEL_1 =12;

END_MAC;

Figure 15. Example of a macro definition for a two-input exclusive - or
circuit.

www.manaraa.com

87

(out, outbar) (set, reset) $RSFF

(out, outbar) (J, K., clock, clear, preset) $JKFF

(out, outbar) (D, clock, clear, preset) $DFF

(memory name, busy, data-out^, , data-out^)

(select, read, data-in^, , data-ing, adr^, , adrg) $MEM

where, out and outbar are the true and complement flip-flop outputs, re­

spectively, and adr^ is an address line.

With one exception, all macros can be defined upon any number of

other macros. The exception is in the case of defining a memory macro.

Due to problems of being able to decode the input and output lists, a memory

macro's definition can be based upon only one macro, which is the primi­

tive $MEM.

Once the macros are defined, the defining of the network in terms of

the macros is quite straightforward. The network definition begins with

DEF_NET; and ends with END_NET;. For instance, if the network consisted

of simply a 4-bit parity checker, then the description might look as

follows:

DEF_NET;

(AO) (BITO, BITl) EXCL_OR;

(Al) (B1T2, BIT3) EXCL_OR;

(PARITY) (AO, Al) EXCL_OR;

END_NET;

where, the network inputs have arbitrarily been named BITO through BIT3 and

an output called PARITY.

www.manaraa.com

88

It should be noted here that two additional commands exist. They are

DMP__MAC (dump macro tables) and DMP_NET (dump network tables). These

instructions can be placed after the last END_MAC or after the END_NET

instructions, respectively. Their function is to cause the appropriate

tables to be output on punched cards. The cards generated by DMP_MAC can

then be used either alone or with other macro definitions for subsequent

network definitions. If they are used with other macros, then these cards

should be placed ahead of the macro definition cards. The first card

that is punched is a LOD_MAC (load macro table) command. The actual deck

of punched cards that the user will receive quite possibly will begin

and end with a number of blank cards, however, they can either be left on

or taken off as the user wishes. As presently implemented, the cards

generated by DMP_NET can only be used for obtaining a crossreference listing.

Here, the first punched card contains LOD_NET (load network table). If

the user is interested in making several different simulation runs on a

single network, then he will need to apply for permanent disk space on

which his network description can be stored. In this case then, the deck

of cards generated by DMP_NET would be used to redefine a new simulation

control program.

If a cross-reference listing is desired, then the command CRS_REF;

is placed following either the END_NET instruction, or else following the

DMP_NET instruction if it is included.

The last specification that must be included, provided a simulation

is in fact wanted, is to define the means bv which the network is to he

exercised. That is, the simulation control instructions must be specified.

The instructions that make up this language are shown in Table 9.

www.manaraa.com

89

Table 9. List of simulation control instructions

1. DEF_CHECK IF (condition)

2. NODEF_CHECK IF (condition)

3. STOP IF (condition)

4. GOTO (label) IF (condition)

5. COMMENT (string) IF (condition)

6. HEADING (x^, Xg, — , 3Sl) IF (condition)

7. TRACE (x^, ̂2' --, IF (condition)

8. READ (x^, Xg, ---, Xn> IF (condition)

9. LOAD (mem^(i), mem2(i), —) IF (i <= M);

10.
*1' *2'

= ^2, —' -, (tp t,.

where, M = integer number
= node name
= binary value

tj_ = integer number indicating time
memj(i) = i-th word of memory mem^
label = any label name
string = any string of characters

condition = any logical condition which return a Boolean
true or false value

NOTE: any of the above statements can be preceded by a label
name.

www.manaraa.com

90

All of the instructions in Table 9 have been shown in their complete

form. That is, all of the instructions have degenerate forms. In partic­

ular, all of the IF clauses in the first nine instructions are optional.

That is, when an instruction is written in the form shown, then the

specified action is taken only when the condition is satisfied. However,

when the IF clause is omitted, the action is unconditionally taken.

The following is a semantic description of each of these ten

instructions.

1. Define check: check all input nodes to the gate before perform­

ing the simulation on it; is the default condition.

2. No define check: do not check for undefined input nodes.

3. Terminate the simulation.

4. Transfer control to the specified label within the control program.

5. Print the comment in the output trace denoted by this specified

string.

6. Print the specified node names in the heading at the top of each

page of output trace.

7. Print the binary values of the specified node names. These node

names must be contained within the list of node names specified in

the heading statement. Not all of the preceding names need be

present, however, they must be in the same order. If no node

name list is specified, then all of nodes specified in the heading

are traced.

8. Read the binary values from punched cards and assign them to the

specified nodes. All of the binary values (0 or 1) corresponding

www.manaraa.com

91

to the execution of each read statement must be punched in

consecutive card columns beginning in the first card column.

9. Perform, in effect, the same function as READ. However, is

used to facilitate the loading of memory elements only, where

the bit strings for each word are punched on a separate card.

In the form shown, all of the first 0 through M words of mem^

would be loaded, and then similarly for any other memory elements

specified. In the case of this instruction, if no IF clause is

present, then the subscript i must be an integer number, or else

no subscript need be specified at all. In the first case, the

specified word in memory would be loaded, whereas in the second

case, the entire memory would be loaded.

10. Assignment statement: the elements in the node list are assigned

the corresponding values in the value list at time t^. In the

event m < n, then the last (n-m) nodes are set to the value of

Vjjj. At time t2, etc. , the value list is complemented and the

assignments made again. Time t = 0 is assumed if no time list is

specified, A periodic signal can also be defined (i.e., a clock

signal) by specifying

An example is shown below. This example is not intended to be

practical or a useful one, rather it is chosen to emphasize the

power of the assignment statement.

- period.

period

^ _J
0
t

4 10 15 20 25 40 45 50

then, X = 1(0,4,10,15,20,25,40,10);

www.manaraa.com

92

As stated previously, the IF condition on all of the first nine

instructions is optional. The nature of the condition for instruction 9

has already been explained, however, the types of conditions that can be

specified in the first eight instructions warrant further explanation.

This condition is, by definition, any clause which, when executed, will

return a Boolean true or false value. In the case of MACSIM, any valid

PL/1 conditional statement is legitimate. The following are a few types

of conditional statements.

1. IF (TIME < = 100)

2. IF (-.STABLE)

3. IF (MOD (TIME, 10) = 0)

4. IF (A & B)

where, TIME = reserved word indicating current time

STABLE = reserved word indicating the entire network is presently

in a stable condition

MOD = built-in PL/1 modulo arithmetic function

A,B = network node names

Note, the standard Boolean operators of NOT, OR, and AND are indicated by

the symbols-1, j , and & respectively. The interpretation of these examples

is as follows;

1. if current time is less than or equal to 100

2. if the network is not stable

3. if current time, modulo 10,equals 0

4. if nodes A and B are both true

www.manaraa.com

93

The meaning of and the nature in which the reserved word STABLE is

used should be apparent from the preceding example. However, the general

nature in which the simulator functions needs to be explained before the

exact meaning of the reserved word TIME can be defined.

First of all, it would seem that in order to exercise a network, the

user would first like to apply a set of stimuli to the network, and then

simulate until some predefined condition results. Therefore, the total

control program could be constructed from a series of these loops. This

is not unlike the DO-END and BEGIN-END blocks of other programming lang­

uages. It can be seen by examining the instruction set in Table 9 that

there is no way that the user can specifically call the simulator or

initialize and increment TIME. This was done because, if the assumption

is correct that the control specification would be made up by a series of

these loops, then it is possible for the system to automatically handle

these functions for the user, and hence relieve him from having to re­

peatedly respecify them.

Since the reserved word TIME is automatically incremented by the

system, then it follows that it must also be initialized automatically.

It was felt that TIME would be more useful to a user if it was reinitial­

ized each time before entering a new loop group, where a loop is defined

to begin with a label and end with a GOTO to that label. This was done

so that the user need not have any knowledge of the total elapsed time

for an action to occur at the time when he is specifying the instructions.

Simply stated, what all of this means is that TIME can be thought

of as merely a loop counter that is initialized each time before entering

www.manaraa.com

94

a new loop (i.e.,label), and the scope of TIME as well as all specified

actions is always local or internal to that loop. Also, this means that

labels, for the most part, can be used in the conventional sense as in

other programming languages, however, the user must be aware of the

system actions taken on TIME by the appearance of a label. That is, the

appearance of a label must have a specific function to perform (i.e., the

argument of a GOTO statement) and should not be arbitrarily used on just

any instruction.

A general note regarding the nature of network node names should be

made. All names can be from one to 16 characters long. However, it is

possible that up to four characters will be concatenated onto a user's

node name in the event the system needs to create a dummy internal name.

Therefore, to insure that all names will always be unique, it would be

advisable not to exceed 12 characters per name. All names must begin

with an alpha character of A through Z. The subsequent characters can be

any of the following:

|Y|z|o| l| I 8] 9

where, the symbol | is read as "or".

Also with regard to names, all of the words making up the instructions

shown in Table 9 as well as all of the preceding instructions such as

DEF_MAC, etc. are reserved words and cannot be used by the user to indicate

node names.

It should be emphasized that quite a large variety of user's specifica­

tion errors can be detected by MACSIM at the time the program is being

entered, however, it is by no means fool-proof. The technique used to

www.manaraa.com

95

implement MACSIM is to compile the user's program into a PL/1 program,

which in turn is compiled into the object code of the IBM 360/65 at which

time the actual simulation can take place. Hence, it is possible that a

certain class of errors will not be detected by MACSIM, but rather by

the PL/1 compiler. And of course there can also be a class of errors that

can exist which are syntactically correct but cause the simulation to

operate incorrectly. It is this class of errors, as is true with almost

any programming system, that the user is obligated to detect for himself

by careful examination of the simulation output trace.

The overall appearance of a MACSIM program is shown in Figure 16.

In addition, all of the simulation-time warning messages that might be

issued by MACSIM are shown in Table 10.

For the prospective user who is already familiar with other program­

ming languages, and in particular who is familiar with Backus Normal

notation, should refer to Tables 11 and 12 where the formal syntax de­

scription for MACSIM is given. These tables should also be referred to

any time the user finds any of the preceding discussion to be incomplete

for his requirements.

The notation used here is called a modified Backus Normal form. The

symbols ::= are read as "is defined by", the symbol | is read as "or",

the brackets [] denote "zero or more occurœnces of", the brackets []

denote "one or more occurrences of", and the brackets > are used to

enclose non-primitive terms. All other symbols and all terms typed in

term on the left-hand side of ::= is the defined item, and the term on

the right-hand side is the defining item(s).

www.manaraa.com

96

The job control cards required for running MACSIM at the Iowa State

University computation center are shown in Appendix 2, and a complete

sample program is shown in Appendix 3.

www.manaraa.com

97

DEF_MAC ;

macro description 5
END_MAC;
DBF MAC;

^macro description

END_MAC;
I

DMP_MAC;
DEF_NET;

^network definition

END_NET;
DMP_NET
CRS_REF
DEF_SIM

•^simulator control instructions

END SIM;

Figure 16. Key-words and structure of input cards for a MACSIM program.

www.manaraa.com

98

Table 10. List of simulation error messages.

1. NODE name IS BEING DRIVEN TO CONFLICTING STATES AT TIME = time

2. NODE name IS BEING USED BUT IS UNDEFINED, IS ASSUMED 0

3. BOTH SET AND RESET INPUTS ARE HIGH INTO RSFF name

4. CLEAR INPUT TO FLIP-FLOP name NOT STABLE LONG ENOUGH

5. PRESET INPUT TO FLIP-FLOP name NOT STABLE LONG ENOUGH

6. CLOCK INP^T TO FLIP-FLOP name NOT STABLE LONG ENOUGH

7. J INPUT TO FLIP-FLOP name NOT STABLE LONG ENOUGH

8. K INPUT TO FLIP-FLOP name NOT STABLE LONG ENOUGH

9. Q-SIDE INPUT TO FLIP-FLOP name NOT STABLE LONG ENOUGH

10. QBAR-SIDE INPUT TO FLIP-FLOP name NOT STABLE LONG ENOUGH

11. DATA INPUT INTO FLIP-FLOP name NOT STABLE LONG ENOUGH PRIOR TO CLOCK

12. DATA INPUT INTO FLIP-FLOP name NOT STABLE LONG ENOUGH AFTER CLOCK

13. CLOCKING OF FLIP-FLOP name ATTEMPTED DURING CLEAR OR PRESET OPERATION

14. ACCESS TO MEMORY name ATTEMPTED WHILE STILL BUSY

15. ADDRESS LINE(S) NOT STABLE ON INPUT TO MEMORY name

16. DATA-IN LINE(S) NOT STABLE ON INPUT TO MEMORY name

17. READ LINE(S) NOT STABLE ON INPUT TO MEMORY name

18. SELECT LINE(S) NOT STABLE ON INPUT TO MEMORY name

www.manaraa.com

99

Table 11. Macro definition syntax

<macro> ::= DEF_MAC ; <macro desc> END_MC;

<macro desc> ::= {<defined macro> | <prira macro>][<coinment>

<connnent> ::= [blank] * [<alphameric>J

<defined macro> ;:= (<list>) (<list>) <macro name^ ; <drive-load desc>

<prim macro> ::= (<list>)(<list>) <prim macro name> ; <timing desc>

<prim macro name> ::= $N0T1$ORJ$AND1$NORJ$NANDj
$RSFF|$JKFF|$DFF|$MEM

<list> :;= <identifier> [, <identifler>]

<macro narae> ::= <identifier>

<drive-load desc> ::= <drive-load key> = <integer> [, <integer>];

<drive-load key> ::= DRIVE|LOAD

<tiinlng desc> ::= <timing key> = <integer>;

<tiining key> DEL_01 DEL_11MIN_CLK|MIN_CLR|
MIN_SET|MIN_HLD
MIN ADR IMIN INP

CYCLE 1 ACCESS!
MIN RED I MIN SEL

<identifier> <letter> [<alphameric>j

<alphameric> ;:= $J#|@|_|<letter>|<digit>

<integer> : := <digit> [<digit>]

<letter> ::= Ajsj 1y|z

<digit> ::=0|l| |8|9

www.manaraa.com

100-101

Table 12. Syntax definition of control language.

<control progranv> ::= DEF_SIM; i<control statement >}
[<comment statement>] END_SIM;

<connnent stateinent> ;:= [blank] - [<string>]

<control statenient> ::= [<label>:] <assignment statement^;}
[<label>:] <operation clause^ [<if clause>];

<assignment statement> ::= <node list> = <value list> [(<time list>)]

<if clause> ::= IF (<condition>)

<operation clause> ;;= DEF_CHECK|NODEF_CHECKJSTOPJ<go to>|
<coinment>| <heading>| <trace>|<read>|<load>

<go to> ;:= GOTO (<label>)

<conraient> ::= COMMENT (<string>)

<heading> ::= HEADING (<node list>)

<trace> ::= TRACE [(<node list>)]

<read> :;= READ (<node list>)

<load> ::= LOAD (<meinory list>)

<node list> ::= <name> [, <narae>]

<value list> ::= <binary digit> [, <binary digit>]

<time list> ::= <integer> [, <integer>]

<memory list> ::= <name> [(<subscript>)] [, <narae> [(<subscrlpt>)]]

<condition> ::= <string>

<label> : := <nanie>

<subscript> ::= <integer>l<nanie>

<name> ::= <alpha> [<alphameric>]

<string> ::= [<alphameric>}

<integer> ::= i<digit>}

^ctxpiica^ n| D ---

<digit> ::= o| 1 |8|9

<binary digit> ::= o|1

www.manaraa.com

102

APPENDIX 2. JOB CONTROL CARD SPECIFICATIONS

Tables 13 through 16 show all of the job control cards which are

required for running any type of job related to MACSIM at the Iowa State

University computation center.

For the MACSIM user, he need only concern himself with Table 13. If,

in fact, he wishes to submit his job at the student submittal area, then

he can ignore all of Appendix 2.

Tables 14 through 16 will be of concern to the system's programmer

who is either interested in the nature in which MACSIM is handled on

disk, or else who is interested in making modifications to any part of

the MACSIM source code.

In all cases, jobname, account number, and programmer name must be

supplied by the appropriate user.

In the event large networks are to be simulated, and when long simulation

times are expected, then the user should contact one of the computation

center's system's programmers in order to determine which of the parameters

in Table 13 to change in order to permit complete operation.

If the user does not wish to simulate his network, then the cards

beginning with, and following,

//STEP3 EXEC —

can be omitted.

www.manaraa.com

100-101

Table 12. Syntax definition of control language.

<control program> ;:= DEF_SIM; i<control statement>1
[<comment statement>] END_SIM;

<comment stateinent> ::= [blank] * [<string>]

<control statement> ::= [<label>:] <assignment statement>;|
[<label>:] <operation clauEe> [<if clause>];

<assignment statement> ::= <node list> = <value list> [(<time list>)]

<if clause> ::= IF (<condition>)

<operation clause> ::= DEF_CHECK|NODEF_CHECK|STOP|<go to>|
<coinment>j <heading>| <trace>| <read>| <load>

<go to> ::= GOTO (<label>)

<coinment> :;= COMMENT (<string>)

<heading> ::= HEADING (<node list>)

<trace> ::= TRACE [(<node list>)]

<read> ::= READ (<node list>)

<load> ::= LOAD (<memory list>)

<node list> ::= <name> [, <name>]

<value list> ::= <binary digit> [, <binary digit>]

<time list> ::= <integer> [, <integer>]

<memory llst> ::= <name> [(<subscript>)] [, <name> [(<subscript>)]]

<condition> ::= <string>

<label> ::= <name>

<subscript> ::= <integer>|<name>

<name> ::= <alpha> [<alphameric>]

<string> ::= {<alphameric>}

<integer> :;= i<digit>}

<alpha> A] b j Ï | Z,

<digit> ::= o| 1 |8|9

<binary digit> : := 01 1

www.manaraa.com

102

APPENDIX 2. JOB CONTROL CARD SPECIFICATIONS

Tables 13 through 16 show all of the job control cards which are

required for running any type of job related to MACSIM at the Iowa State

University computation center.

For the MACSIM user, he need only concern himself with Table 13. If,

in fact, he wishes to submit his job at the student submittal area, then

he can ignore all of Appendix 2.

Tables 14 through 16 will be of concern to the system's programmer

who is either interested in the nature in which MACSIM is handled on

disk, or else who is interested in making modifications to any part of

the MACSIM source code.

In all cases, jobname, account number, and programmer name must be

supplied by the appropriate user.

In the event large networks are to be simulated, and when long simulation

times are expected, then the user should contact one of the computation

center's system's programmers in order to determine which of the parameters

in Table 13 to change in order to permit complete operation.

If the user does not wish to simulate his network, then the cards

beginning with, and following,

//STEP3 EXEC —

can be omitted.

www.manaraa.com

103

Table 13. User's job control cards.

//jobname JOB 'acct.#,TIME=4,REGI0N=128K',programmer
//STEPl EXEC PGM=IEFBR14,TIME=(,30)
//ALLOCATE DD DSNAME=6c6cCODE,DISP=(NEW,PASS) ,
// UNIT=SPOOL,SPACE=(TRK,(4,4,1)),
// DCB=(RECFM=FB,LRECL=90,BLKSIZE=400)
//STEP2 EXEC PGM=MACSIM1,REGI0N=128K
//STEPLIB DD DSNAME=PR0G.I4153MC1,DISP=SHR
//SYSPRINT DD SYSOUT=A,SPACE=(CYCL,(10)),
// DCB=(RECFM=VBA,LRECL=137,BLKSIZE=3292)
//PUNCH DD SYSOUT=B,DCB=(RECFM=FB,LRECL=80,BLKSIZE=1600,BUFNO=1)
//SYSIN DD *

User's MACSIM program cards

I*
//NETWORK DD DSNAME=5=&C0DE (NETWORK) ,DISP= (OLD,PASS) ,
// VOLUME=REF=*.STEPl.ALLOCATE
//DECLARE DD DSNAME=&&CODE(DECLARE),DISP=(OLD,PASS),
// VOLUME=REF=*.STEPl.ALLOCATE
//CONTROL DD DSNAME=&&CODE(CONTROL),DISP=(OLD,PASS),
// VOLUME=REF=*.STEPl.ALLOCATE
//STEP3 EXEC PL1F,PARM.PL1L='MACRO,NOSOURCE2',REGION=128K
//PLIL.SYSLIB DD DSNAME=&&CODE,DISP=(OLD,PASS)
//PLIL.SYSIN DD DSNAME=PSQ.l4153PRG,DISP=(OLD,KEEP)
//LKED.USE DD DSNAME=PROG.I4153MC2,DISP=SHR
//LKED.SYSIN DD *
INCLUDE USE(MACSIM2)
ENTRY IHENTRY

f *
//GO.SYSIN DD *

blank card

r
y User's input data for READ and LOAD commands

/*

www.manaraa.com

104

Table 14. Job control cards for compiling and loading MACSIMl onto disk
from source cards.

//jobname JOB 'acct.#,TIME=5,REGI0N=160K',programmer,MSGLEVEL=(1,1)
//STEPl EXEC MOD
//MOD.SYSIN DD *

SCRATCH DSNAME=PROG.I4153MC1,V0L=2314=LIBPAK
UNCATLG DSNAME=PR0G.I4153MC1

//STEP2 EXEC PL1LFCL,PARM.PL1L='N0STMT',TIME.PL1L=3,REGION,PL1L=160K,
// PARM.LKED='XREF,LIST,LET,OVLY'
//PLIL.SYSIN DD *

MACSIMl source deck

//LKED.SYSLMOD DD DSNAME=PROG.I4153MC1(MACSIMl),DISP=(NEW,CATLG),
// UNIT=DISK,VOLUME=SER=LIBPAK,SPAGE=(TRK,(33,1,1),RLSE)
//LKED.SYSIN DD *
OVERLAY ALPHA
INSERT PARSE,**PARSEA
OVERLAY BETA
INSERT DEF_MAC,DEF_MACA

OVERLAY BETA
INSERT DEF_NET,DEF NETA

OVERLAY ALPHA
INSERT SORT,***SORTA
INSERT PUT_DCL,PUT_DCLA

OVERLAY ALPHA
INSERT DEF_SIM,DEF_SIMA

OVERLAY ALPHA
INSERT CRS_REF,CRS_REFA

OVERLAY ALPHA
INSERT DMP_MAC,DMP_MACA

OVERLAY ALPHA
INSERT LOD_MAC,LOD_MACA

OVERLAY ALPHA
INSERT DMP_NET,DMP_NETA

OVERLAY ALPHA
INSERT LOD_NET,LOD_NETA

/*

www.manaraa.com

105

Table 15. Job control cards required for compiling and loading MACSIM2
from its source cards onto disk.

//jobname JOB 'acct.#,TIME=5,REGION=128K',programmer,MSGLEVEL= (1,1)
//STEPl EXEC MOD
//MOD.SYSIN DD *
SCRATCH DSNAME=PROG.I4153MC2,VOL=2314=LIBPAK
UNCATLG DSNAME=PROG.I415 3MC 2

//STEP2 EXEC PL1LFCL,PARM.PL1L='N0STMT',REGION.PL1L=128K,
// PARM.LKED='MAP,LIST,LET,NCAL*
//PLIL.SYSIN DD *

i MACSIM2 source deck

//LKED.SYSLMOD DD DSNAME=PR0G.I4153MC2(MACSIM2),DISP=(NEW,CATLG),
// UNIT=DISK,VOLUME=SER=LIBPAK.SPACE=(TRK,(7,1,1),RLSE)
/*

www.manaraa.com

106

Table 16. Job control cards required for loading (not compiling)$PROGRM
onto disk from its source cards.

//jobname JOB 'acct.#,TIME=5,REGION=96K'.programmer,MSGLEVEL=(1,1)
//STEPl EXEC MOD

//MOD.SYSIN DD *

SCRATCH DSNAME=PSQ,I4153PRG,V0L=2314=LIBPAK
UNCATLG DSNAME=PSQ.I4153PRG

//STEP2 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A
//SYSIN DD DUMMY
//SYSUT2 DD DSNAME=PSQ.I4153PRG,DISP=(NEW,CATLG),
// UNIT=DISK,VOLUME=SER=LIBPAK,
// SPACE=(TRK,(1,1)),DCB=(RECFM=FB,LRECL=80,BLKSIZE=1920)
//SYSUTl DD *

^$PR0GRM source deck

/*
//STEP3 EXEC PGM=IEBGENER
//SYSPRINT DD SYS0UT=A
//SYSIN DD DUMMY
//SYSUT2 DD SYSOUT=A,DCB=(RECFM=FB,LRECL=80,BLKSIZE=1600)
//SYSUTl DD DSNAME=PSQ.I4153PRG,DISP=(OLD,KEEP)
/ *

www.manaraa.com

107

APPENDIX 3. A COMPLETE SAMPLE PROGRAM

The following is a complete MACSIM program containing both the re­

quired user specifications and the resulting output. Figure 17 contains

the schematic representations of the 3N5493 which can be used as

either a three or four bit ripple counter, and of the actual simulation

model, which is defined by the primitive macros $JKFF and $NAND.

The following page then contains the user specification, followed by

the cross-reference listing for the network. The next four pages contain

the PL/1 program that was generated by MACSIM. The reader will notice that

the original source statements are included as comments within the PL/1

code just prior to the code that was generated by that statement. (Note:

a PL/1 comment is any string of characters enclosed by the symbols /*

and */). And finally, the last two pages contain the trace that was

generated during simulation.

www.manaraa.com

108

SN5493

12 1 11

r 1
14.

J A

-0 CP

K I

2

3

L

B

B

-0

c

c

D

D

J

SIMULATION MODEL

CO CI C2

ONE

COUNT»

CLEAR
CLEAR

CP

K CL

riguLc 17. AcLual integrated circuit and simulation model tor a three-bit
ripple counter.

www.manaraa.com

1 • A COMPLETE SAMPLE RUN ON MACS IM USIKG A 3-BIT RIPPLE COUNTER
2
3 • CEFINE THE MACROS
4 OEF_MAC;
5 I A, B. C) ICPi CH, C12, PR) SN5493;
6 DRIVE • ICi lOf 10:
T LOAD ' 1, 1 . I t 9;
8 lA, ABI IPR, PR, CP, NCLt PR I JKFF;
9 IE, EBI I PR, PP. A , NCL, PR) JKFF;

10 tC, ce) I PR, PR, B , NCL. PR) JKFF;
11 I NCL) (CLl , CL2I SNANO;
12 OEL.O • 8;
13 DEL. I « 12;
14 END.MAC:
15
16 OEF.MAC;
17 10, 06) IJ , K, CLK. CLP, PRT) JKFF;
18 CRIVE = 10, ic:
19 LOAD = 1 . 1 . 1 , 1 . 1 :
20 10, CB) (J . K. CLK, CLR, PRT) tJKFF:
21 CEL_0 = 25;
22 CEL. I = 16;
23 MIN_CLK = 50;
24 MIN.CLR = 5C;
25 EMD.MAC;
26 H-»
27 • DEFINE 1HE NETMCRK O
28 DfF.NET;
29 (CO, CI , C2) (COUM, CLEAK, CLÉAK, ONE)
30 END. NET;
31
32 » GENERATE THE CROSS-KgFEBENCE LISTING
33 CRS.REF;

Cross -re ference l i s t ing would normal ly appear t i ere .

34 * DEFINE IHE SIMULATION CONTROLLER
35 DEF_SIM;
36 HEAOIN& (COUNT, CO, CI , C2. CLEAR);
37 ONE - 1:
38 L I : CLEAR > 1 10, 50) :
39 COUNT < C IC, IOC, 150, 200, 100):
40 TRACE IF I MCOITIME, 10) - I) :
41 GOTO (L I) IF ITIKE 950):
42 STOP:
43 END.SIM:

ENC OF NETWORK AKC SIMULATOR COMPILATION

www.manaraa.com

CROSS-REFERENCE LISTING

LINE-NODE KAME

1-CLEAR

SOURCE REM. GENERATING SIGNALS
LINE DRIVE DRIVE LINE-NOOE NAME

NET GENERATED SIGNALS
LOAD LOAD LINE-NODE NAME

I &-C0
V-Cl
5-C2

1 3-CO
4-Cl
5-C2

2-COUNT 3-CO
V-Cl
5-C2

3-CO 29 10

10

1-CLEAR
1-CLEAR
2-COUNT
6-0 NE

4-Cl 29 10 1-CLEAR
1-CLEAR
2-COUNT
6-ONE

10

5-C2 29 IC

10

1-CLEAR
1-CLEAR
2-COUNT
6-ONE

6-ONE J-CO
4-Cl
5-C2

www.manaraa.com

/ • "MACSIM2" NETWORK SIMULATCR (tPRCGRM) • / C0130 3

SOURCE L ISTING.

/• "HACSIM2" NETWORK SIMULATOR {»PBOGRH) */ L
2

1 SFROGRH: 3
PROCEDURE RECURSIVE: 4

2 CCL 1 SNOOEISNOSIZEI CONTPCLLEC EXTERNAL# 5
2 LAST FIXED BIN, 6
2 NDX FIXED BIN, 7
2 VAL BITI l t ; B

3 CCL (INAMEISNCSIZE) CHARI16) VARYING CCNTRCLLED, 9
*UFTRI*N05IZE+1I FIXEC BIN CCSTROLLED. 10
SUSEISUSSIZEI F IXED SIN CCNTROLLEC. 11
t lFTRISIPSIZE) FIXED BIN CCNTROLLED, 12
t lNPUTSISINSIZEl FIXED BIN CONTRCLLEC, 13
KNDSIZE, lUSSIZE, t lPSIZE, t lNSIZEl FIXED BIN) EXTERNAL ; 14

4 DCL ((t IT IHE. TIME I FIXED BIN INITIAL (0) . 15
STABLE B I T i n INITIAL I 'C 'BI . 16
tCEFCHK e iTl l l INITIAL I«1"81 I EXTERNAL: 17

5 CCL I IHAXl , SNAX2) F IXEC BIN EXTERNAL; 18
6 CCL aAOOR 8 IT I 151 STATIC, 19

31 FIXEC BIN STATIC, 20
SLAB FIXEO BIN, 21
IOUT Sir (l) STATIC: 22

23
7 DCL SNETWRK ENTRY (FIXEC BIN) , 24

*CLEAR ENTRY FIXED BIN, FIXEO BIN, FIXEO BIN) , 25
•PRESET ENTRY I , , , , FIXEC 9IN, FIXED PIN, FIXEO BIN) , 26
tJKFF ENTRY I , , , , , , , , FIXEO BIN, FIXEC BIN, FIXEC BIN) , 27
(OFF ENTRY FIXEO BIN. FIXEC BIN, FIXEO BIN, 28

FIXEO 8IN. FIXEC BIN) . 29
SHEAOl ENTRY (I *) FIXED 0 INI . 30
SHEAC2 ENTRY. 31
(CONNT ENTRY ICHAR 1*11, 32
rTRACE ENTRY ((*> FIXEO BIN, (•) FIXEC BIN) . 33
SéRFCR ENTRY (FIXED BIN. CHAR 116 I VARI. 34
tCHED ENTRY I , BlTd) , FIXEO Rlh, FIXED BIN) . 35
SINULB ENTRY: 36

37
/«•••• THE FOLLOWING ARE THE USER'S DECLARATICN STATEMENTS •••»•/ 38

39
62

8 DCL 1 SOCOtOOC L ' «NODE BASED (SPl i . 63
1 *001*000 LIKE INOOE BASED (tP2) . 64
1 SC02S00C LIKE INOOE BASED (SF3I , 65
1 t coa tooc LIKE «NODE BASED (>P4) , 66
1 fCO LIKE tNOOE BASED l tP5) , 67
1 «Cl LIKE SNOOE BASED l *P6) , 68
1 iC2 LIKE SNQOE BASED ISP7I , 69
1 CLEAR LIKE tNOOE BASED ISP8) , 70

www.manaraa.com

/• •HACS1N2" NETWORK SIMULATOR IIPROGRH) • / 00130 4

1 COUNT LIKE JNODE BASED l$P9) , 71
1 CO LIKE INOOE BASEC ISPIOI . 72
1 Cl LIKE SNOOE BASED ISPl l I i 73
1 C2 LIKE SNCOE BASED MP 12) , 74
1 ONE LIKE SNGDE BASED (tF13l : 75

9 CCL (tPl . tP2, SP3, »P4, tP5, tP6, SP7, SPS. 76
IP9, $P1C, *P11, »P12. $P131 77

POINTER STATIC: 78
10 CCL *1(101 LABEL: 79
11 >N0SI2E - 13; 80
12 ALLOCATE tNOOE: 81
13 ALLOCATE JNAHE INITIAL 82

I ' scno tooo* , •SCCl iOOO*. • t002t000<, « *003*000' , 83
•»CC«, " ICI" . '#C2«, «CLEtR*, 'COLM' , «CC* , 84
•CI ' , 'C2' . "ONE"1 : 85

14 tussiZE = 11: 86
15 ALLOCATE *USE INITIAL 87

(1 , 4 , 7 , 10, 10, 3 , 6f 9 , 2 , 5 , 88
81: 89

16 ALLOCATE JUPTR INITIAL 90
(0 , 1 , 0 , 0 , 0 , 0 , 0 , 4 , 6 , 7 , 91
E, 0 , 9 , 121: 92

17 * INSI /E * 17; 93
18 ALLOCATE «INPUTS INITIAL 94

113, 13, 13, 9 , 13, 13, 13, 13, 10, 13, 95
13, 13, 13, 11, 13, 9 , 81 ; 96

19 «IPS12E « LL; 97
20 ALLOCATE * IPTR INITIAL 98

10, 1 , 2 , 0 , 6 , 7 , 0 , 11# 12, 16, 99
16) : 100

21 tPl • ACDRONOCEID): IP2 > ACOR 1 «NODE (2) > ; 101
23 *P3 « ACDRI(NOOFI 3)) : *P4 « ACORI(NODE 14)>; 102
25 «P5 • ACDRIAN0CEI5)) : IPB < ATDR1tNOOE(6) 1 : 103
27 *P7 > AC0<>(*N0DEI7)) : (P8 « ACORI «NODE Ml 1 : 104
29 *P9 • ACDRI (NOOEI 9)) ; *P10 ' ADCR 1 SNODF 110) > : 105
21 SPl l ' /CCRISNCOEIID): *P12 ' ACDR 1 »NCOE 1 12> 1 ; 106
33 tP13 ' «CCRItNODEI13)) ; 107

34 CO a l » 1 TO SN0SI2E: tNODEISD.LAST « -1 : 42
36 «NODEia I) .NDX > d l : 43
37 INnOEI ï I I .VAL « "O'B: END: 44

45
/«• • THE FOLLCtaING IS THE USER'S SIMULATION CONTROL PROGRAM • • • / 46

47
108

/« HEADING 1 COUNT, CO, CI , C2, CLEAR): • / 110
39 CCL tHLISTlOIS) FIXED BIN STATIC INITIAL 111

19, 10, 11, 12, 89: 112
40 «MAX1 « 5; CALL «HEAD 11*HLI ST 101 : 113
42 SIGNAL ENOPAGE ISVSPRINT): 114

l is
/« ONE > i : #/ 116

www.manaraa.com

/• "MACSIM2» NETWORK SIMULATOR (JPRCGRM) • / C0130 PAGE 5

<3 IF (TIHE * 0) THEN CO; 117
45 CALL *CHEC(ONE, ' l 'B, 0 . 0) ; 118
<6 END: 119

120
/« L l : CLEAR « 1 t o , 5C); • / 121

«7 CCL t IVCdl BITdl STATIC INITIAL 122
(« l 'B»; 123

48 CCL t tT0(2l FIXED BIN STATIC INITIAL 124
10. 50) : 125

49 TIME • 0: 126
îO L l : 12 7
! l CD aï = 1 T C 2 WHILE IT IME -<= »»TO (i l)) i ENC: 128
!2 IF la l < ' 21 THEN DC: 129

CALL SCHEOICLEAR, f lVOI l) , 0 , 01: 130
•5 »tvo ' -.»»V0; 131
• 6 END; 132

133
/ * COUNT = 0 10, lOC, 150, 2C0, 100); * / 134

!7 CCL i lVKl) BIT(l) STATIC INITIAL 135
l«0 'B); 136

•8 DCL » IT1(4) FIXED BIN STATIC INITIAL 137
10, 100, IbC, 200); 13F

•9 DC « I = 1 TC 4 WHILE (TIME -= t lT l lJ lO; END; 139
<1 IF lai <= 4) THEN 00; 140
<3 CAUL tCr iEOICaUNÎ. I tVKl) . 0 . 0) ; 141
«4 *»VI ' 142
15 END: 14 3
«6 IF ai < 4 THEN DO: 144
(8 DO = 3 TU 4 : t tTKoi l) - 11T 1 (à I) » 1 00 ; END: 145
i l END: 146

14 r
/< TRACE IF I M0D(I I»*E, IC) = 1) : • / 148

T2 CALL I IMUL8: TIME = T IME*1; 149
T4 IF I MOC(TI«E. 10) = 1 I THEN 00: 150
Vb CALL JTSACEIJHLISTIO, fHLISTlO); 15 1
: '7 END; 152

153
/« GOTO (L l) IF IT IME <» 950): • / 154

'8 IF IT IME <- 950) THES DO; 155
no GO TO L l : 156
m END: 157

158
/ • STOP: • / 159

l !2 RETURN: 160
49
50

113 SNETMRK: ENTRY I tLAB): 51
52

114 GO TO $L(SLAei: 53
54
55

/ • * * THE FOLLOWING IS THE USER'S NETWORK OESCRIPTICN PROGRAM • * • / 56

www.manaraa.com

E!
81
et
8S
SI
S2
S3

94
95
S7
se
S9

101
102
103

104
105
107
1C8
109
111
112
1X3

1 14
11.5
1 16
1 17

11.8

/» "HACSIM2" NETWORK SIMULATOR (IPROGRM) • / C0130 PAGE 6

57
161

/« 1(0. Cl . C2I (COUNT. CLEAR, CLEAR, ONE! SN5493: • / 163
«LU): IF I *001*000.VAL C -CNE.VALI THEN GO TO tL (2) : 164

CALL <CLEAR(CO, «0C0SC00, tOCiSCOO, ONk, 25, 16. 501 : 165
RETURN: 166

SL(2) : IF (ONE.VAL & ->tC01 »000 .VAL I THEN GO TO IL (1) ; 167
CALL IPRESETICO, *000*000, *001*000, ONE, 25, 16, 50) ; 168
RETURN; 169

1113): CALL tJKFFtCO. *000*000, ONE, ONE, COUNT, *001*000. ONE, «CO, 170
25. 16, 50) : 171

RETLRN: 172
*1141 : F (1001*000.VAL G -ONE.VAL) THEN GO TO *L(5I : 173

CALL ICIEARICI . *C02*C00. *001*000. ONE. 25, 16, 50) : 174
RETURN; 175

1L(S): IF (ONE.VAL £ - ICCltOOC .VAL) THEN GO TO *L(4I : 176
CALL «PRESET ICI , *002*000, *0Cl *00 0 , ONE, 2 b , 16. 501 : 177
RETURN: 178

*116): CALL *JKFFIC1, >002*000, CNE, CNE, CC, 1001*000, ONE, *C1, 179
25, 16, 50) ; 180

RETURN: lAl
*1(7) : IF 1*001*000.VAL & - .CNE.VALI THEN GO TO *L I 91: 182

CALL *CIEARIC2, *003*000, *001*000, CNE, 25, 16, 50) ; 183
RETURN; 184

*118): IF (ONE.VAL C -1001*000.VAL) THEN GO TO $LI7) ; 185
CALL *PRESET(C2. *303*000, *001*000. ONE, 25. 16. 501 : 186
RETURN: 187

* L t 9) : CALL *JT(FFIC2, 1003*000, ONE, ONE, CI , t001*c00, ONE, «C2, 188
?>, 16 , : o) : 189

RETURN: 190
IL(IO); *OUT = - . (CLEAR.VAL C CLEAR.VAL): 191

CALL *CHEC(*001*000, *OUT, 8 , 12) : 192
RETURN: 193

59
END (PROCRN; 60

6 1

www.manaraa.com

TIME

C C
0 0
U
N
1

c c
2 I

E
A
R

C 0 I
10 0 I
20 0 I

• • • • • CLOCKING OF FLIP-FLOP CI *TTEHPTED DURING CLEAR OR PRESET OPERATION
»• • • • CLOCKING OF FLIP-FLOP C2 «TTEMPTEO DURING CLEAR OR PRESET OPERATION

I
I

30 0 c c 0
*0 0 G 0 c
50 0 C c c c
60 0 c 0 c c
70 0 c 0 c 0
80 0 C 0 0 c
9C 0 0 0 c c

IOC 1 c c c c
110 1 0 0 0 0
120 f c c c c
130 1 0 0 c c
1*0 1 c 0 c c
150 0 c c 0 c
16C 0 0 c c 0
170 0 1 0 c c
180 0 1 0 c c
190 0 1 0 c c
200 1 c c c
21C 1 0 c c
220 1 c c c
23 C 1 0 0 c
2*0 1 c c c
250 0 1 0 c 0
260 0 1 0 c c
27C 0 1 c c c
280 0 c 0 c c
290 0 c 0 0 c
300 1 c 1 c c
310 1 c 1 c 0
320 1 c 1 0 0
330 1 c 1 c c
3*0 1 0 1 c 0
350 0 c 1 c c
360 0 c 1 0 c
37C 0 1 c c
380 0 1 c c
340 0 1 0 0
*00 1 c c
*10 1 c c
*20 1 c c
*30 1 0 0
**C 1 c 0
*50 0 1 c 0
*60 0 1 c 0
*70 0 1 c c
*80 0 c 1 0 c
*90 0 c 1 c c

TIME

0
10
20

30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
ISO
190
200
210
220
2 30
2*0
250
260
270
280
290
300
310
320
330
3*0
350
360
370
380
390
*00
*10
*20
*30
**0
*50
*60
*70
*80
*90

www.manaraa.com

116

u u w < a
Vfw
W m
oo

w O 5 z m»

lO U
I

low
ISS

W O W O U W U O U U W W O U W O O O O O W U W O O W O W W O U W O W O W O W W O W O V W

"* ——— —. "" www

o w w o w o o w w w w w o w w o w o o w w o o o

O W W O W W W W W O W W O W W O W O O W W O

O O O O O O O O W O O O O O O O O O O O O

O O O O O W W O O O W O O O O W W O O O O O O O O O O O O O U O W U O W O O O O O O O O

%Rj;s;g:;:S333333*s:S2;:%pf:f:g%8:Z22:3:s:ggg3*g
b
o

	1972
	Digital system design and simulation
	Ronald William Borgstahl
	Recommended Citation

	tmp.1412808429.pdf.P6kj4

